Since July 28th, 1997 the two experimental mini-stands of young Norway spruce [Picea abies (L.) Karst.] have been grown in lamellar domes at ambient (AC) and elevated concentrations of CO2 [EC, i.e., ambient + 350 µmol(CO2) mol-1]. Before the start of exposure to EC (June 1997) the dependencies of photosystem 2 (PS2) quantum yield (Y) on irradiance, estimating the efficiency of PPFD utilisation in PS2 photochemistry, were the same for AC and EC shoots. After one month of EC simulation (August 1997), Y values were higher for EC needles as compared with the AC ones (by 1-42 %), whereas two months later (October 1997) an opposite effect was observed (decrease of Y by from 1 to 33 %). By chlorophyll a (Chl a) fluorescence induction the effects of EC on PS2 function were further characterised. During the first month a moderate improvement of PS2 function was estimated for EC needles from slightly higher potential yield of PS2 photochemistry (FV/FM, by 1 %) and reduced amount of inactive PS2 reaction centres (relative Fp1 level, by 15 %). However, the prolonged exposure to EC led firstly to a slight but significant decrease of FV/FM (by 3 %), secondly to a reduction of half time of fluorescence rise (t1/2, by 14 %), and finally to pronounced accumulation of inactive PS2 reaction centres (by 41 %). From the gradual response of individual Chl a fluorescence parameters we suggest a probable sequence of events determining the stimulation and subsequent depression of PS2 function for Norway spruce during the first season under EC. and J. Kalina ... [et al.].
The short-term acclimation (10-d) of Norway spruce [Picea abies (L.) Karst] to elevated CO2 concentration (EC) in combination with low irradiance (100 μmol m-2 s-1) resulted in stimulation of CO2 assimilation (by 61 %), increased total chlorophyll (Chl) content (by 17 %), significantly higher photosystem 2 (PS2) photochemical efficiency (Fv/Fm; by 4 %), and reduced demand on non-radiative dissipation of absorbed excitation energy corresponding with enhanced capacity of photon utilisation within PS2. On the other hand, at high cultivation irradiance (1 200 μmol m-2 s-1) both Norway spruce and spring barley (Hordeum vulgare L. cv. Akcent) responded to EC by reduced photosynthetic capacity and prolonged inhibition of Fv/Fm accompanied with enhanced non-radiative dissipation of absorbed photon energy. Norway spruce needles revealed the expressive retention of zeaxanthin and antheraxanthin (Z+A) in darkness and higher violaxanthin (V) convertibility (yielding even 95 %) under all cultivation regimes in comparison with barley plants. In addition, the non-photochemical quenching of minimum Chl a fluorescence (SV0), expressing the extent of non-radiative dissipation of absorbed photon energy within light-harvesting complexes (LHCs), linearly correlated with V conversion to Z+A very well in spruce, but not in barley plants. Finally, a key role of the Z+A-mediated non-radiative dissipation within LHCs in acclimation of spruce photosynthetic apparatus to high irradiance alone and in combination with EC was documented by extremely high SV0 values, fast induction of non-radiative dissipation of absorbed photon energy, and its stability in darkness. and I. Kurasová ... [et al.].
The adaptation of barley (Hordeum vulgare L. cv. Akcent) plants to low (LI, 50 µmol m-2 s-1) and high (HI, 1000 µmol m-2 s-1) growth irradiances was studied using the simultaneous measurements of the photosynthetic oxygen evolution and chlorophyll a (Chl a) fluorescence at room temperature. If measured under ambient CO2 concentration, neither increase of the oxygen evolution rate (P) nor enhancement of non-radiative dissipation of the absorbed excitation energy within photosystem 2 (PS2) (determined as non-photochemical quenching of Chl a fluorescence, NPQ) were observed for HI plants compared with LI plants. Nevertheless, the HI plants exhibited a significantly higher proportion of QA in oxidised state (estimated from photochemical quenching of Chl a fluorescence, qP), by 49-102 % at irradiances above 200 µmol m-2 s-1 and an about 1.5 fold increase of irradiance-saturated PS2 electron transport rate (ETR) as compared to LI plants. At high CO2 concentration the degree of P stimulation was approximately three times higher for HI than for LI plants, and the irradiance-saturated P values at irradiances of 2 440 and 2 900 µmol m-2 s-1 were by 130 and 150 % higher for HI plants than for LI plants. We suggest that non-assimilatory electron transport dominates in the adaptation of the photosynthetic apparatus of barley grown at high irradiances under ambient CO2 rather than an increased NPQ or an enhancement of irradiance-saturated photosynthesis. and I. Kurasová ... [et al.].
This study was designed to test the hypothesis that the spectral composition of incident radiation, as defined by the relative proportions of blue (B; λmax = 455 nm) and red (R; λmax = 625 nm) photons, can affect photosynthetic induction, since B photons stimulate stomatal opening and are more effectively absorbed by leaves than R photons. Different stages of photosynthetic induction, primarily determined by the photo-modulation of Rubisco activity and stomata opening, were investigated in dark-adapted leaves of Fagus sylvatica transferred to saturating irradiance [800µmol(photon) m-2 s-1] at B/R ratios of 1/3, 1/1, or 3/1.
In agreement with our hypothesis, photosynthesis was induced faster by irradiance with a high B/R ratio (3/1); as demontrated by a higher IS60 (induction state 60 s after leaf illumination) and lower T 90 (the time period required to reach 90 % of maximum steady-state photosynthesis). However, there were no differences in induction between leaves receiving equal (1/1) and low (1/3) B/R ratios. Electron transport was highly sensitive to radiation quality, exhibiting faster induction kinetics with increasing B/R ratio. Such stimulation of carbon-assimilatory processes corresponds with faster activation of Rubisco and lower non-photochemical quenching (NPQ) as the proportion of B photons is increased. In contrast, the kinetics of stomatal opening was independent of the spectral composition of incoming radiation. Since slightly higher absorption efficiency of high B/R radiation does not fully explain the changes in induction kinetics, the other possible mechanisms contributing to the stimulation of electron transport and Rubisco activity are discussed. and M. Košvancová-Zitová ... [et al.].
The long-term impact of elevated CO2 concentration on photosynthetic activity of sun-exposed (E) versus shaded (S) foliage was investigated in a Picea abies stand (age 12 years) after three years of cultivation in adjustable-lamella-domes (ALD). One ALD is supplied with either ambient air [ca. 350 µmol(CO2) mol-1; AC-variant) and the second with elevated CO2 concentration [ambient plus 350 µmol(CO2) mol-1; EC-variant). The pronounced vertical profile of the photosynthetically active radiation (PAR) led to the typical differentiation of the photosynthetic apparatus between the S- and E-needles in the AC-variant estimated from the irradiance-responses of various parameters of the room temperature chlorophyll (Chl) a fluorescence parameters. Namely, electron transport rate (ETR), photochemical efficiency of photosystem 2, PS2 (ΦPS2), irradiance-saturated values of non-photochemical quenching of minimum (SV0) and maximum (NPQ) fluorescence levels, and photochemical fluorescence quenching (qp) at higher irradiances were all significantly higher for E-needles as compared with the S-ones. The prolonged exposure to EC did not cause any stimulation of ETR for the E-needles but a strongly positive effect of EC on ETR was observed for the S-needles resulting in more than doubled ETR capacity in comparison with S-needles from the AC-variant. For the E-needles in EC-variant a slightly steeper reduction of the ΦPS2 and qp occurred with the increasing irradiance as compared to the E-needles of AC-variant. On the contrary, the S-needles in EC variant revealed a significantly greater capacity to maintain a high ΦPS2 at irradiances lower than 200 µmol m-2 s-1 and to prevent the over-reduction of the PS2 reaction centres. Moreover, compared to the AC-variant the relation between SV0 and NPQ exhibited a strong decrease (up to 72 %) of the SV0-NPQ slope for the E-needles and an increase (up to 76 %) of this value for the S-needles. Hence the E- and S-foliage responded differently to the long-term impact of EC. Moreover, this exposure was responsible for the smoothing of the PAR utilisation vertical gradient in PS2 photochemical and non-photochemical reactions within the canopy. and M. V. Marek ... [et al.].
The state of some parameters of photosynthetic activity in Norway spruce (Picea abies [L.] Karst.) seedlings during the first autumn temperature transition to frost was monitored in October 1991. The trees were grown under field conditions of the Beskydy Mts. (North Moravia, The Czech Republic). Simultaneous measurements of Chi a fluorescence and C02 gas exchange revealed two phases in the functional transition of the assimilatory apparatus. Immediately upon the temperature transition to frost a distinct decrease in the radiant energy saturated rate of C02 uptake was observed and radiationless dissipation was indicated by higher values of the nonphotochemical quenching coefficient. The second period of the transition, a period with prolonged influence of frost together with a higher level of irradiance, was connected with a decrease of photosynthetic efficiency. The overwhelming capacity for protective non-photochemical energy dissipation and the complete reduction of acceptor QA occurred especially at medium and high incident irradiance documenting photoinhibitory damage to the photosynthetic apparatus.
The acclimation depression of capacity of photon utilisation in photochemical reactions of photosystem 2 (PS2) can develop already after three months of cultivation of the Norway spruces (Picea abies [L.] Karst.) under elevated concentrations of CO2 (i.e., ambient, AC, + 350 µmol(CO2) mol-1 = EC) in glass domes with adjustable windows. To examine the role that duration of EC plays in acclimation response, we determined pigment contents, rate of photosynthesis, and parameters of chlorophyll a fluorescence for sun and shade needles after three seasons of EC exposure. We found responses of shaded and exposed needles to EC. Whereas the shaded needles still profited from the EC and revealed stimulated electron transport, for the exposed needles the stimulation of both electron transport activity and irradiance saturated rate of CO2 assimilation (PNmax) under EC already disappeared. No signs of the PS2 impairment were observed as judged from high values of potential quantum yield of PS2 photochemistry (FV/FM) and uniform kinetics of QA reoxidation for all variants. Therefore, the long-term acclimation of the sun-exposed needles to EC is not necessarily accompanied with the damage to the PS2 reaction centres. The eco-physiological significance of the reported differentiation between the responses of shaded and sun exposed needles to prolonged EC may be in changed contribution of the upper and lower crown layers to the production activity of the tree. Whereas for the AC spruces, PNmax of shaded needles was only less than 25 % compared to exposed ones, for the EC spruces the PNmax of shaded needles reached nearly 40 % of that estimated for the exposed ones. Thus, the lower shaded part of the crown may become an effective consumer of CO2. and J. Kalina ... [et al.].
The effects of different spectral region of excitation and detection of chlorophyll (Chl) a fluorescence at room temperature on the estimation of excitation energy utilization within photosystem (PS) 2 were studied in wild-type barley (Hordeum vulgare L. cv. Bonus) and its Chl b-less mutant chlorina f2 grown under low and high irradiances [100 and 1 000 µmol(photon) m-2 s-1]. Three measuring spectral regimes were applied using a PAM 101 fluorometer: (1) excitation in the red region (maximum at the wavelength of 649 nm) and detection in the far-red region beyond 710 nm, (2) excitation in the blue region (maximum at the wavelength of 461 nm) and detection beyond 710 nm, and (3) excitation in the blue region and detection in the red region (660- 710 nm). Non-photochemical quenching of maximal (NPQ) and minimal fluorescence (SV0), determined by detecting Chl a fluorescence beyond 710 nm, were significantly higher for blue excitation as compared to red excitation. We suggest that this results from higher non-radiative dissipation of absorbed excitation energy within light-harvesting complexes of PS2 (LHC2) due to preferential excitation of LHC2 by blue radiation and from the lower contribution of PS1 emission to the detected fluorescence in the case of blue excitation. Detection of Chl a fluorescence originating preferentially from PS2 (i.e. in the range of 660-710 nm) led to pronounced increase of NPQ, SV0, and the PS2 photochemical efficiencies (FV/FM and FV'/FM'), indicating considerable underestimation of these parameters using the standard set-up of PAM 101. Hence PS1 contribution to the minimal fluorescence level in the irradiance-adapted state may reach up to about 80 %. and M. Štroch ... [et al.].
Effects of short-term exposure to different irradiances on the function of photosystem 2 (PS2) were studied for barley grown at low (LI; 50 µmol m-2 s-1) and high (HI; 1 100 µmol m-2 s-1) irradiances. HI barley revealed higher ability to down-regulate the light-harvesting within PS2 after exposure to high irradiance as compared to LI plants. This ability was estimated from the light-induced decreases of F685/F742 and E476/E436 in emission and excitation spectra of 77 K chlorophyll (Chl) a fluorescence in vivo which was 65 and 10 % for HI plants as compared to 30 and 2 % for LI plants, respectively. For LI plants this protective down-regulation of the light-harvesting of PS2 was saturated at 430 µmol m-2 s-1, and progressive PS2 photodamage was induced at higher irradiances. After exposure of LI segments to 2 200 µmol m-2 s-1 a pronounced maximum at 700 nm appeared in emission spectrum of 77 K Chl a fluorescence. Based on complementary analysis of 77 K excitation spectra measured at the emission wavelength 685 nm we suggest that this emission maximum may be attributed to the formation of aggregates of light-harvesting complexes of PS2 (LHC2) with part of PS2 core during progressive PS2 photodamage. Our results can be explained assuming different contributions of LHC2 and PS2 core to the total nonradiative dissipation of absorbed excitation energy for the LI and HI barley. and M. Čajánek ... [et al.].
The review deals with thermal dissipation of absorbed excitation energy within pigment-protein complexes of thylakoid membranes in higher plants. We focus on the de-excitation regulatory processes within photosystem 2 (PS2) that can be monitored as non-photochemical quenching of chlorophyll (Chl) a fluorescence consisting of three components known as energy-dependent quenching (qE), state-transition quenching (qT), and photoinhibitory quenching (qI). We summarize the role of thylakoid lumen pH, xanthophylls, and PS2 proteins in qE mechanism. Further, both the similarity between qE and qI and specific features of qI are described. The other routes of thermal energy dissipation are also mentioned, that is dissipation within photosystem 1 and dissipation through the triplet Chl pathway. The significance of the individual de-excitation processes in protection against photo-oxidative damage to the photosynthetic apparatus under excess photon supply is stretched. and M. Štroch, V. Špunda, I. Kurasová.