The photosynthetic pigments of twigs in five tree and shrub species possessing chlorenchyma under a well developed, stomata-less, and highly photon absorptive periderm were analysed and compared to those of the corresponding canopy leaves. We asked whether the unavoidable shade acclimation of corticular chlorenchyma results in photosynthetic pigment complements typically found in shade leaves. As expected, chlorophyll (Chl) a/b ratios in twigs were consistently low. However, carotenoid (Car) analysis did not confirm the initial hypothesis, since twigs generally contained increased Chl-based pool sizes of the xanthophyll cycle components. The contents of photo-selective neoxanthin and lutein were high as well. Yet, β-carotene content was extraordinarily low. In addition, twigs retained high pre-dawn ratios of the deepoxidized antheraxanthin and zeaxanthin, although environmental conditions were not pre-disposing for such a state. The unexpected Car composition allows the conclusion that other micro-environmental conditions within twigs (hypoxia, increased red to blue photon ratios, and extremely high CO2 concentrations) are more important than shade in shaping the Car profiles. and E. Levizou, Y. Petropoulou, Y. Manetas.
Diurnal and seasonal fluctuations in water potential (Ψ), stomatal conductance (gs), transpiration rate (E), and net photosynthetic rate (PN) were monitored in Capparis spinosa L., a Mediterranean plant growing during summer, i.e. at the period considered the most stressful for local plant life. In spite of the complete absence of rain, Ψ exhibited a modest drop at midday (-2.7 MPa), but was fully recovered overnight, indicating sufficient access to water sources. The stomata remained open throughout the day and season and the high E resulted in leaf temperatures up to 3.9 °C below air temperature. Additionally, PN of the fully exposed leaves was higher than 25 μmol m-2 s-1 for more than 10 h per day throughout the summer growth period. No symptoms of photooxidative stress were shown, as judged by maximum photosystem 2 photochemical efficiency (Fv/Fm) and the function of xanthophyll cycle. Indeed, diurnal inter-conversions of the xanthophyll cycle components were modest during the summer and a more intensive function of the cycle was only evident during leaf senescence in autumn. In comparison with a semi-deciduous and an evergreen sclerophyll co-existing in the same ecosystem, C. spinosa assimilated up to 3.4 times more CO2 per m2 during its growth period (May to October) and up to 1.8 times more on an annual basis. and E. Levizou, P. Drilias, A. Kyparissis.
Total carotenoids assessed spectrophotometrically in crude extracts may be considerably overestimated when high contents of phenolic compounds are co-extracted. In this case, the absorbance tails of phenolics extend well into the blue part of the spectrum, interfering with carotenoid estimation. Extracts of phenolic-rich organs, with a low ratio of photosynthetic to heterotrophic and/or supportive cells (for example, stems or twigs) are vulnerable to such pitfalls and may need chromatographic separation of carotenoids. and E. Levizou, Y. Petropoulou, Y. Manetas.