Plasma corticosterone (CORT) measures are a common procedure to detect stress responses in rodents. However, the procedure is invasive and can influence CORT levels, making it less than ideal for monitoring CORT circadian rhythms. In the current paper, we examined the applicability of a non-invasive fecal CORT metabolite measure to assess the circadian rhythm. We compared fecal CORT metabolite levels to circulating CORT levels, and analyzed change in the fecal circadian rhythm following an acute stressor (i.e. blood sampling by tail veil catheter). Fecal and blood samples were collected from male adolescent rats and analyzed for CORT metabolites and circulating CORT respectively. Fecal samples were collected hourly for 24 h before and after blood draw. On average, peak fecal CORT metabolite values occurred 7-9 h after the plasma CORT peak and time-matched fecal CORT values were well correlated with plasma CORT. As a result of the rapid blood draw, fecal production and CORT levels were altered the next day. These results indicate fecal CORT metabolite measures can be used to assess conditions that disrupt the circadian CORT rhythm, and provide a method to measure long-term changes in CORT production. This can benefit research that requires long-term glucocorticoid assessment (e.g. stress mechanisms underlying health)., P. K. Thanos ... [et al.]., and Obsahuje seznam literatury
Physiologically, leptin concentration is controlled by circadian rhythm. However, in critically ill patients, circadian rhythm is disrupted. Thus we hypothesized that circadian leptin concentration changes are not preserved in critically ill patients. Ten consecutive critically ill heart failure patients with the clinical indication for mechanical ventilation and sedation were included into our study. Plasma leptin concentration was measured every 4 h during the first day (0-24 h) and during the third day (48-72 h) after admission. During the first day, there were significant leptin concentration changes (ANOVA, p<0.05), characterized by an increase in concentration by 44 % (16-58 %); p=0.02 around noon (10 am-2 pm) and then a decrease in concentration by 7 % (1-27 %); p=0.04 in the morning (2 am-6 am). In contrast, there was no significant change in leptin concentration during the third day after admission (ANOVA, p=0.79). Based on our preliminary results, we concluded that in critically ill heart failure patients, the circadian rhythm of plasma leptin concentration seems to be preserved during the first but not during the third day after admission., I. Cundrle Jr., P. Suk, V. Sramek, Z. Lacinova, M. Haluzik., and Obsahuje bibliografii
The circadian system controls the timing of behavioral and physiological functions in most organisms studied. The review addresses the question of when and how the molecular clockwork underlying circadian oscillations within the central circadian clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and the peripheral circadian clocks develops during ontogenesis. The current model of the molecular clockwork is summarized. The central SCN clock is viewed as a complex structure composed of a web of mutually synchronized individual oscillators. The importance of development of both the intracellular molecular clockwork as well as intercellular coupling for development of the formal properties of the circadian SCN clock is also highlighted. Recently, data has accumulated to demonstrate that synchronized molecular oscillations in the central and peripheral clocks develop gradually during ontogenesis and development extends into postnatal period. Synchronized molecular oscillations develop earlier in the SCN than in the peripheral clocks. A hypothesis is suggested that the immature clocks might be first driven by external entraining cues, and therefore, serve as “slave” oscillators. During ontogenesis, the clocks may gradually develop a complete set of molecular interlocked oscillations, i.e., the molecular clockwork, and become self-sustained clocks., A. Sumová, Z. Bendová, M. Sládek, R. El-Hennamy, K. Matějů, L. Polidarová, S. Sosniyenko, H. Illnerová., and Obsahuje bibliografii a bibliografické odkazy
Reoxygenation following hypoxic episodes can increase the risk for the development of ventricular arrhythmias, which, in addition to circadian aspects of reoxygen ation arrhythmias has not been studied extensively. The aim of the present study was to evaluate circadian changes in the electrical stability of the rat heart during reoxygenation following a hypovent ilatory episode. The electrical stability of the heart, defined in the present study as the ventricular arrhythmia threshold (VAT), was measured at 3 h intervals at clock times 09:00, 12:00, 15:00, 18:00, 21:00, 24:00, 03:00, 06:00 and 09:00 during 20 min hypoventilation (20 breaths/min, tidal volume = 0.5 ml/100 g body weight [n=17]) and subsequent 20 min reoxygenation (50 breaths/min, tidal volume = 1 ml/100 g body weight [n=4]) intervals. The experiments were performed usin g pentobarbital-anesthetized (40 mg/kg intraperitoneally) female Wistar rats that first underwent a four-week adaptation to a 12 h light:12 h dark regimen. Detailed analysis show ed that circadian VATs changed to biphasic rhythms at 10 min of hypoventilation. The VAT circadian rhythms were observed immediately following the commencement of reoxygenation, with the highest values measured between 12:00 and 15: 00, and the lowest values between 24:00 and 03:00. These resu lts suggest that myocardial vulnerability is dependent on the light:dark cycle and characteristics of pu lmonary ventilation., P. Švorc ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Rhythmic daily changes in the Na,K-ATPase activity have been previously described for rat kidney cortex, showing two peaks: at 0900 h and 2100 h, and two valleys: at 1500 h and 0100 h - 0300 h. The oscillations in Na,K-ATPase activity are produced by an inhibitor, which binds the enzyme and is present in the rat blood plasma at valley times and absent or at very low concentrations at peak times. Since it has been demonstrated that active Na+ extrusion from the cells of several tissues depends not only on the Na,K-ATPase but also on the ouabain-insensitive Na-ATPase, we studied the activity of this latter enzyme of several rat tissues, i.e., kidney cortex, small intestine, liver, heart and red blood cells along the day. None of these tissues showed any variation of their Na-ATPase activity along the day. Preincubation of kidney cortex homogenates obtained at 0900 h, with blood plasma drawn at 0900 h and 1500 h, did not modify the Na-ATPase activity. Our results indicate that the Na-ATPase activity does not oscillate along the day. These results are in agreement with the idea that the Na-ATPase could partially compensate the Na+ transport affected by oscillations of the Na,K-ATPase activity., A. Reyes ... [et al.]., and Obsahuje seznam literatury
Článek se zabývá hlavními fyzikálními a fyziologickými determinantami výkonnosti člověka v kosmu a zároveň poukazuje na doposud méně reflektované psychické souvislosti pobytu jedince v tomto extrémním prostředí. Největší pozornost věnuje problematice mikrogravitace, radiace a cirkadiánních rytmů s důrazem na adaptační změny nejen ve fyziologických a psychofyziologických, ale především v psychických procesech. Zaobírá se otázkou pozměněné kvality zpracovávaných informací v prostředí mikrogravitace, a izolace od běžných podnětů a ukazatelů a navozuje otázku dostupnosti a adekvátnosti signálů nejenom pro kognitivní, ale i afektivní a konativní procesy. Autorka soudí, že vedle fyziologické a psychofyziologické adaptace na kosmické prostředí nutně dochází i k adaptaci psychické, respektive k adaptaci psychických procesů. Stať dospívá k závěru, že k plnějšímu pochopení adaptace kognitivních, afektivních a konativních procesů je potřeba především hloubkových kvalitativních šetření průběhu psychické adaptace jedinců pobývajících v kosmu., This paper deals with the main physical and physiological determinants of human performance during a spaceflight and also addresses so far insufficiently discussed psychological context of being in this extreme environment. The greatest attention is paid to the issue of microgravity, radiation and circadian rhythms, with emphasis on the adaptive changes in physiological and psycho-physiological processes. The study explores the issue of data acquisition and the quality of information processing under the condition of isolation and confinement from natural stimuli and indicators. In this way, the paper further deals with the signals available to crew members about the changes in their cognitive, affective and motivational processes. The paper claims that besides the physiological and psycho-physiological adaptation to the space environment, psychological adaptation necessarily goes on at the same time It is concluded that the in-depth qualitative investigation of the psychological adaptation could provide a more complete understanding of the accommodation of cognitive, affective and motivational processes during spaceflights., Iva Poláčková Šolcová., and Obsahuje seznam literatury