Cortisol is secreted by the central hypothalamo-pituitary-adrenal axis and affects many target organs and tissues, particularly in response to stressor demands and infection. Recent data reporting cortisol synthesis in hair follicles have shown the existence of a parallel “peripheral” HPA-axis. However, although there is evidence from in vitro studies and single-observation comparisons between groups that cortisol from hair follicles reflects endocrine changes associated with stressor demands, there are no reports to date of repeated measurements of in vivo cortisol responsivity in hair to transitory stressors. This issue was investigated with three males who underwent 1 min cold pressor test (CP). Cortisol response in hair to stressor demand appears to be (a) swift but transitory, (b) localized to the site of the demand and (c) independent of central HPA-axis activity., C. F. Sharpley, K. G. Kauter, J. R. McFarlane., and Obsahuje seznam literatury
The hormone leptin, which is thought to be primarily produced by adipose tissue, is a polypeptide that was initially characterized by its ability to regulate food intake and energy metabolism. Leptin appears to signal the status of body energy stores to the brain, resulting in the regulation of food intake and whole-body energy expenditure. Subsequently, it was recognized as a cytokine with a wide range of peripheral actions and is involved in the regulation of a number of physiological systems including reproduction. In the fed state, leptin circulates in the plasma in proportion to body adiposity in all species studied to date. However other factors such as sex, age, body mass index (BMI), sex steroids and pregnancy may also affect leptin levels in plasma. In pregnant mice and humans, the placenta is also a major site of leptin expression. Leptin circulates in biological fluids both as free protein and in a form that is bound to the soluble isoform of its receptor or other binding proteins such as one of the immunoglobulin superfamily members Siglec-6 (OBBP1). Although the actions of leptin in the control of reproductive function are thought to be exerted mainly via the hypothalamicpituitary-gonadal axis, there have also been reports of local direct effects of leptin at the peripheral level, however, these data appear contradictory. Therefore, there is a need to summarize the current status of research outcomes and analyze the possible reasons for differing results and thus provide researchers with new insight in designing experiments to investigate leptin effect on reproduction. Most importantly, our recent experimental data suggesting that reproductive performance is improved by decreasing concentrations of peripheral leptin was unexpected and cannot be explained by hypotheses drawn from the experiments of excessive exogenous leptin administration to normal animals or ob/ob mice., M. Herrid, S. K. A. Palanisamy, U. A. Ciller, R. Fan, P. Moens, N. A. Smart, J. R. McFarlane., and Obsahuje bibliografii
There exists no examination of what is the minimum anti - hypertensive threshold intensity for isometric exercise training. Twenty two normotensive participants were randomly assigned to training intensities at either 5 % or 10 % of their maximal contraction. Twenty participants completed the study. Clinical meaningful, but not statistically significant, reductions in systolic blood pressure were observed in both 5 % and 10 % groups -4.04 mm Hg (95 % CI -8.67 to +0.59, p=0.08) and -5.62 mm Hg (95 % CI -11.5 to +0.29, p=0.06) respectively after 6 weeks training. No diastolic blood pressure reductions were observed in either 5 % -0.97 mm Hg (95 % CI -2.56 to +0.62, p=0.20) or 10 % MVC +1.8 mm Hg (95 % CI -1.29 to +4.89, p=0.22) groups respectively after training. In those unable to complete isometr ic exercise at the traditional 30 % intensity, our results suggest there is no difference between 5 and 10 % groups and based on the principle of regression to the mean, this could mean both interventions induce a similar placebo-effect., N. C. L. Hess, D. J. Carlson, J. D. Inder, E. Jesulola, J. R. McFarlane, N. A. Smart., and Obsahuje bibliografii
Although in vitro studies have shown that cortisol concentrations in human and animal hair respond to environmental stressors, few data have been reported regarding the in vivo variability of hair cortisol to brief pain stressors. As an extension of a previous study, hair was collected and assayed for cortisol concentrations from each of three sites (elbow, mid-forearm, wrist) before and after participants immersed their hand in ice water for 1 min. Results showed that the "localization" boundary of hair cortisol responses previously reported was able to be reduced to only 250 mm between sites. Furthermore, all participants showed considerable variability in hair cortisol across the three sites at each collection period, although consistency across participants in overall responsivity of hair cortisol to the pain stressor was observed., C. F. Sharpley, K. G. Kauter, J. R. McFarlane., and Obsahuje bibliografii
Pharmacokinetics of leptin in mammals has received limited attention and only one study has examined more than two time points and this was in ob/ob mice. This study is the first to observe the distribution of leptin over a time course in female mice. A physiologic dose (12 ng) of radiolabelled leptin was injected in adult female mice via the lateral tail vein and tissues were dissected out and measured for radioactivity over a time course up to two hours. Major targets for administered leptin included the liver, kidneys, gastrointestinal tract and the skin while the lungs had high concentrations of administered leptin per gram of tissue. Leptin was also found to enter the lumen of the digestive tract intact from the plasma. Very little of the dose (<1 %) was recovered from the brain at any time. Consequently we confirm that the brain is not a major target for leptin from the periphery, although it may be very sensitive to leptin that does get to the hypothalamus. Several of the major targets (GI tract, skin and lungs) for leptin form the interface for the body with the environment, and given the ability of leptin to modulate immune function, this may represent a priming effect for tissues to respond to damage and infection., R. A. Hart, R. C. Dobos, L. L. Agnew, R. L. Tellam, J. R. McFarlane., and Obsahuje bibliografii