Two cultivars of common buckwheat (Fagopyrum esculentum), Pyra and Siva, were exposed to three treatments: water deficit (WD), foliar spraying by selenium (as Na2SeO4) (Se), and the combination of both. In WD-plants the stomatal conductance (gs) was significantly lower, while WD+Se-plants of Siva had significantly higher gs. None of the treatments resulted in significant differences of potential photochemical efficiency of photosystem 2 (PS2). A significantly higher actual photochemical efficiency of PS2 was obtained in Siva WD-plants and in Pyra Se-and WD-plants which was possibly due to improvement of plant water management during treatment. A significant interaction was observed between the effects of WD and Se on respiratory potential in Pyra. WD, Se, and the WD+Se combination resulted in shorter Pyra and Siva plants, with a reduced number of nodes. WD slightly negatively affected the yield per plant. The yield was highest in plants exposed to Se only. In Siva the number of seeds was triple while the average seed mass remained unchanged. and N. Tadina ... [et al.].
Oviposition behaviour of Delia radicum is not only influenced by host plant duality but also by the duality of the substrate in which the plant grows. Direct behavioural observations showed that the females partition their visits to a host plant (cauliflower) into ovipositional bouts separated by exploration of the host plant surface. Ovipositional bouts were further partitioned into acts of egg deposition separated by exploration of the substrate. While the mean number of ovipositional bouts per visit (2.6), and eggs laid per egg deposition event (1.4) were stable, the mean number of egg deposition events per ovipositional bout significantly varied (from 2.1 to 7.3) with the duality of the substrate and the physiological state of the female (egg load). Ovipositing females adjusted the final number of eggs laid around the plant during the behavioural stage of substrate exploration. Additional experiments using plant surrogates treated with methanolic extract of Brassica leaves mounted in different substrates showed that: (a) the presence of living Brassica, Hordeum or Allium roots in a substrate enhances the number of eggs laid into this substrate, but females do not discriminate between the different plants; (b) females avoid both wet and dry substrates and prefer the substrates with a dry surface and moist particles directly accessible at a depth of about 5 mm; (c) substrates rich in organic matter are preferred to sand; (d) olfactory perception of volatile chemicals from the substrate must at least partially be responsible for the differences in oviposition in various substrates.
Changes in growth parameters, carbon assimilation efficiency, and utilization of 14CO2 assimilate into alkaloids in plant parts were investigated at whole plant level by treatment of Catharanthus roseus with gibberellic acid (GA). Application of GA (1 000 g m-3) resulted in changes in leaf morphology, increase in stem elongation, leaf and internode length, plant height, and decrease in biomass content. Phenotypic changes were accompanied by decrease in contents of chlorophylls and in photosynthetic capacity. GA application resulted in higher % of total alkaloids accumulated in leaf, stem, and root. GA treatment produced negative phenotypic response in total biomass production but positive response in content of total alkaloids in leaf, stem, and roots. 14C assimilate partitioning revealed that 14C distribution in leaf, stem, and root of treated plants was higher than in untreated and variations were observed in contents of metabolites as sugars, amino acids, and organic acids. Capacity to utilize current fixed 14C derived assimilates for alkaloid production was high in leaves but low in roots of treated plants despite higher content of 14C metabolites such as sugars, amino acids, and organic acids. In spite of higher availability of metabolites, their utilization into alkaloid production is low in GA-treated roots. and N. K. Srivastava, A. K. Srivastava.
Insect-infested (II) acorns germinated 3 d earlier than the healthy (H) ones. However, germination ratio of II-acorns was strongly decreased compared with H-acorns and there were great differences in activities of amylase. We found an apparently lower net photosynthetic rate and total chlorophyll contents of the first true leaf of II-acorns than of the H-ones. Maximal photochemical efficiency of photosystem 2 (PS2, Fv/Fm) decreased in seedlings germinated from II-acorns than from the H-ones. Infestation of insects, especially for weevil (Curculio spp.) had significantly negative effects on length of taproots, height of plants, dry mass (DM) of roots and the first fully expanded true leaf. Leaf area and total N content of the first true leaf declined due to limitation of resource reserves in cotyledons. Damage of cotyledons caused by weevil accounted much for poor development of seedlings germinated from II-acorns. A mutual relationship between seedling establishment and seed-infesting insects may exist due to high predation on H-acorns by small rodents. and X. F. Yi, Z. B. Zhang
Seedlings of chile ancho pepper were grown in pots containing a pasteurized mixture of sand and a low phosphorus (P) sandy loam soil, and either inoculated (VAM) or not inoculated (NVAM) with the endomycorrhizal fungus Glomus intraradices. Long Ashton nutrient solution (LANS) was modified to supply P to the seedlings at 0, 11, and 44 g(P) m-3 (P0, P11, P44, respectively). Low P depressed net photosynthetic rate (PN), stomatal conductance (gs), phosphorus use efficiency (PN/P), and internal CO2 concentration (Ci). The mycorrhiza alleviated low P effects by increasing PN, gs, PN/P, and decreasing Ci. At P0, Ci of NVAM plants was equal to or higher than that of VAM plants, suggesting nonstomatal inhibition of photosynthesis. Gas exchange of VAM plants at P0 was similar to that of NVAM plants at P11. Endomycorrhiza increased leaf number, leaf area, shoot, root and fruit mass at P0 and P11 compared to NVAM plants. Reproductive growth was enhanced by 450 % in mycorrhizal plants at P44. Root colonization (arbuscules, vesicles, internal and extraradical hyphae development) was higher at lower P concentrations, while sporulation was unaffected. The enhanced growth and gas exchange of mycorrhizal plants was in part due to greater uptake of P and greater extraradical hyphae development. and L. Aguilera-Gomez ... [et al.].
The influence of phosphorus (P) and nitrogen (N) supply on biomass, leaf area, photon saturated photosynthetic rate (Pmax), quantum yield efficiency (α), intercellular CO2 concentration (Ci), and carboxylation efficiency (CE) was investigated in Vicia faba. The influence of P on N accumulation, biomass, and leaf area production was also investigated. An increase in P supply was consistently associated with an increase in N accumulation and N productivity in terms of biomass and leaf area production. Furthermore, P increased the photosynthetic N use efficiency (NUE) in terms of Pmax and α. An increase in P supply was also associated with an increase in CE and a decrease in Ci. Under variable daily meteorological conditions specific leaf nitrogen content (NL), specific leaf phosphorus content (PL), specific leaf area (δL), root mass fraction (Rf), Pmax, and α remained constant for a given N and P supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. δL increased with increasing N supply or with increasing NL. We tested also the hypothesis that P supply positively affects both N demand and photosynthetic NUE by influencing the upper limit of the asymptotic values for Pmax and CE, and the lower limit for Ci in response to increasing N. and Y. Jia, V. M. Gray.
The review sums up research conducted at CIAT within a multidiscipline effort revolving around a strategy for developing improved technologies to increase and sustain cassava productivity, as well as conserving natural resources in the various eco-edaphic zones where the crop is grown, with emphasis on stressful environments. Field research has elucidated several physiological plant mechanisms underlying potentially high productivity under favourable hot-humid environments in the tropics. Most notable is cassava inherent high capacity to assimilate carbon in near optimum environments that correlates with both biological productivity and root yield across a wide range of germplasm grown in diverse environments. Cassava leaves possess elevated activities of the C4 phosphoenolpyruvate carboxylase (PEPC) that also correlate with leaf net photosynthetic rate (PN) in field-grown plants, indicating the importance of selection for high PN. Under certain conditions such leaves exhibit an interesting photosynthetic C3-C4 intermediate behaviour which may have important implications in future selection efforts. In addition to leaf PN, yield is correlated with seasonal mean leaf area index (i.e. leaf area duration, LAD). Under prolonged water shortages in seasonally dry and semiarid zones, the crop, once established, tolerates stress and produces reasonably well compared to other food crops (e.g. in semiarid environments with less than 700 mm of annual rain, improved cultivars can yield over 3 t ha-1 oven-dried storage roots). The underlying mechanisms for such tolerance include stomatal sensitivity to atmospheric and edaphic water deficits, coupled with deep rooting capacities that prevent severe leaf dehydration, i.e. stress avoidance mechanisms, and reduced leaf canopy with reasonable photosynthesis over the leaf life span. Another stress-mitigating plant trait is the capacity to recover from stress, once water is available, by forming new leaves with even higher PN, compared to those in nonstressed crops. Under extended stress, reductions are larger in shoot biomass than in storage root, resulting in higher harvest indices. Cassava conserves water by slowly depleting available water from deep soil layers, leading to higher seasonal crop water-use and nutrient-use efficiencies. In dry environments LAD and resistance to pests and diseases are critical for sustainable yields. In semiarid zones the crop survives but requires a second wet cycle to achieve high yields and high dry matter contents in storage roots. Selection and breeding for early bulking and for medium/short-stemmed cultivars is advantageous under semiarid conditions. When grown in cooler zones such and as in tropical high altitudes and in low-land sub-tropics, leaf PN is greatly reduced and growth is slower. Thus, the crop requires longer period for a reasonable productivity. There is a need to select and breed for more cold-tolerant genotypes. Selection of parental materials for tolerance to water stress and infertile soils has resulted in breeding improved germplasm adapted to both favourable and stressful environments.
Incorporation of photosynthetically fixed 14C was studied at different time intervals of 12, 24, and 36 h in various plant parts-leaf 1 to 4 from apex, roots, and rhizome-into primary metabolites-sugars, amino acids, and organic acids, and secondary metabolites-essential oil and curcumin-in turmeric. The youngest leaves were most active in fixing 14C at 24 h. Fixation capacity into primary metabolites decreased with leaf position and time. The primary metabolite levels in leaves were maximal in sugars and organic acids and lowest in amino acids. Roots as well as rhizome received maximum photoassimilate from leaves at 24 h; this declined with time. The maximum metabolite concentrations in the roots and rhizome were high in sugars and organic acids and least in amino acids. 14C incorporation into oil in leaf and into curcumin in rhizome was maximal at 24 h and declined with time. These studies highlight importance of time-dependent translocation of 14C-primary metabolites from leaves to roots and rhizome and their subsequent biosynthesis into secondary metabolite, curcumin, in rhizome. This might be one of factors regulating the secondary metabolite accumulation and rhizome development. and Deeksha Dixit, N. K. Srivastava.
The possibility of simultaneously ušed chlorophyll (Chl) synthesis precursor (glutamic acid) and metal chelator (2,2'-dipyridyl) as a photodynamic inhibitor of the chlorophyll synthesis was studied. Wheat {Triticum aestivum L.) and vegetable marrow {Cucurbita moschata Duch.) leaves were treated with 2,2'-dipyridyl (2,2'- DP), and 2,2'-DP along with glutamic acid which increased the protochlorophyllide (Pchlide) content in the vegetable marrow plants to a higher extent. An irradiation of the treated leaves caused an inhibition of Pchlide reduction which was more notable in those of the dicotyledonous vegetable marrow plant.
The file contains all Czech verbs included in the Retrograde Morphemic Dictionary of Czech Language (Slavíčková Eleonora, Academia 1975).
The data was obtained by scanning a portion of the dictionary that contains words ending in -ci and -ti. Among them, there were 18 non-verbs, which were removed. Using OCR, the data was converted into the plain text format and the result was checked by two independent readers. However, if a user encounters a forgotten error, please report.