Saliva contains possible biomarkers that are associated with dental caries. The present study aimed to analyse differences in the abundance of proteins in the saliva between caries-positive (CP; N = 15) and caries-free (CF; N = 12) males and to compare differences in the abundance of proteins between two saliva sample fractions (supernatant and pellet). We found 14 differently significantly expressed proteins in the CF group when comparing the supernatant fractions of the CP and CF groups, and three proteins in the pellet fractions had significantly higher expression in the CP group. Our results indicate very specific protein compositions of the saliva in relation to dental caries resistance (the saliva of the CP group mainly contained pellet proteins and the saliva of the CF group mainly contained supernatant proteins). This was the first time that the saliva pellet fraction was analysed in relation to the dental caries status. We detected specific calcium-binding proteins that could have decalcified enamel in the saliva pellet of the CP group. We also observed significantly up-regulated immune proteins in the saliva supernatant of the CF group that could play an important role in the caries prevention. The particular protein compositions of the saliva pellet and supernatant in the groups with different susceptibilities to tooth decay is a promising finding for future research.
We studied the development of the indirect flight muscles and reproductive organs in long-winged (macropterous) adults of the flightless bug Pyrrhocoris apterus (L.) and the factors involved in flight muscles histolysis by means of total protein analysis. Both the extirpation of the corpus allatum, an endocrine gland that is the sole source of juvenile hormone, and sham operation accelerated histolysis and decreased the level of the total protein content of the flight muscles to the same extent. Degeneration of flight muscles was not a result of allatectomy but rather a consequence of injury, followed by resumption of enhanced food intake, because it was stimulated also by the removal of wings. Transfer of penultimate instar larvae to a diapause-inducing short-day photoperiod did not prevent imaginal growth and histolysis of flight muscles, but inhibited growth of ovaries in females and maturation of accessory glands in adult males. Thus inactivation of the corpus allatum in diapausing macropters does not prevent imaginal growth of their flight muscles. Application of a high dose of methoprene to the surface of intact long-day macropterous adults induced precocious histolysis of flight muscles and growth of ovaries in females and accessory glands in males. Prolonged starvation of macropterous adults had only a small effect on the histolysis of their flight muscles. The results indicate that imaginal growth and histolysis of indirect flight muscles in macropterous individuals of P. apterus are largely juvenile hormone-independent processes that are programmed to occur spontaneously, but can be affected by various internal and external factors.
Plants cultivated on acid soils that contain toxic levels of Al3+ usually produce low yields. A multi-factorial treatment of gypsum (G), boron (B), and limestone (Lm) was applied to such soil in order to determine the biochemical basis of the best management plan for ameliorating the soil acidity for sustainable growth of alfalfa. The alfalfa shoots were subjected to analysis for hexose, protein, nucleotide, and chlorophyll (Chl) contents, fructose 1,6-bisphosphatase (FBPase) activity, and the RNA synthetic activity of glutamate dehydrogenase (GDH). Hexose and protein contents of control alfalfa without B and G, but with Lm (672 g m-2) amendment were 0.87 and 38.30 g, respectively, per kg shoot. Increasing the G doses at fixed moderate doses of 0.15 and 0.30 g m-2 B decreased the FBPase activity by ∼53 and ∼31 %, respectively. However, increasing the B doses at higher fixed G (1 kg m-2= G1.0) increased the FBPase activity by ∼91 % thus indicating that G1 optimized the saccharide metabolism by neutralizing the soil acidity. In the absence of B, increasing the G doses also maximized the hexose and Chl contents, but minimized the nucleotide amount. In the absence of G, increasing the B doses maximized the RNA synthetic activity of GDH, but lowered the hexose and Chl contents as well as the FBPase activity without affecting the protein contents, thereby permitting the selection of B (0.45 g m-2) with Lm as the best amendment for the sustainable growth of alfalfa. Treatment with 0.45 g B and 0.5 kg G (= G0.5) induced the strongest B-Ca antagonism by maximizing the hexose and Chl contents but severely suppressing the FBPase activity and the RNA synthetic activity of GDH. Therefore, the coordinate optimization of saccharide metabolism through the G-dependent neutralization of soil acidity, and of RNA metabolism through the B-dependent detoxification of Al3+ are the biochemical options for the mitigation of the adverse effects of soil acidity for the optimization of sustainable alfalfa production. and G. O. Osuji ... [et al.].
The oligomeric state of photosystem 2 (PS2) complex in soybean leaves treated with saturating irradiance was studied by non-denaturing polyacrylamide gel electrophoresis (PAGE) and gel filtration chromatography. PS2 dimers resolved by non-denaturing PAGE accounted for about 75 % of total PS2 complex and there was no significant difference in the ratio of PS2 dimer to monomer between samples from saturating irradiance-treated and fully dark-adapted leaves. Furthermore, BBY particles were resolved into four chlorophyll-enriched fractions by gel filtration chromatography. From their molecular masses and protein components, these fractions were deduced to be PS2 dimer, PS2 monomer, oligomeric light-harvesting complex 2 (LHC2), and monomeric LHC2. Also, no change in the proportion of PS2 dimer in total PS2 was observed in the granal region of thylakoid membranes from soybean leaves after saturating irradiation. Hence the dimer is the predominant natural form of PS2 in vivo and no monomerisation of PS2 dimer occurs during saturating irradiance-induced photoinhibition in soybean leaves. and Shi-Qing Cai ... [et al.].
Ohromujúci vývoj laserových optických metód umožnil širokú plejádu manipulácií s objektmi pomocou svetelného lúča a ďalej podnietil vývoj experimentálnych postupov umožňujúcich zachytiť subpikonewtonovské sily medzi molekulami. Aplikácia optického silomera pri štúdiu vlastností biomakromolekúl nám pomáha chápať fyzikálne princípy mechanickej funkcie týchto komplexných nanometrových objektov., The extensive development of laser technology has enabled a large variety of object manipulations with light. This has initiated the development of experimental assays for the detection of sub piconewton forces between molecules. The application of an optical force meter for the study of bio-macromolecules reveals elementary physical principles of the mechanical function of these complex nano sized objects., Gabriel Žoldák., and Obsahuje bibliografické odkazy
The carboxylating activity and content of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO, EC 4.1.1.39), and other soluble proteins in young seedlings and mature leaves of Lutescens-758, a drought-sensitive cultivar of soft spring wheat Triticum aestivum L., were studied under the conditions of drought and subsequent rehydration. Seedlings and mature plants preliminarily treated with the cytokinin-like compound kartolin-4 were compared to untreated plants. Drought-induced decrease in RuBPCO activity should be attributed not only to proteolytic decomposition of the enzyme protein itself but also to a partial inhibition of its catalytic activity. The decrease in RuBPCO activity was larger than that in RuBPCO content. Water stress induced a marked decrease in the soluble protein content. Kartolin-4 increased the resistance to drought. and I. I. Chernyad'ev, O. F. Monakhova.
In this work, the injuries caused by clethodim herbicide application as well as the use of exogenous salicylic acid (SA) as a protective agent against clethodim in Zea mays leaves were examined. Although the target for clethodim is the inhibition of acetyl coenzyme A carboxylase (ACCase) which is the key enzyme for fatty acid biosynthesis, it can indirectly affect the photosynthetic machinery, gaseous exchange and some biochemical parameters. Clethodim application caused chlorosis and yellowing of leaf-tip parts. Higher doses caused browning or reddening of leaves and sometimes dead parts of the leaf margins were observed. The rate of photosynthesis was significantly lowered and the pigments content was highly reduced as a response to clethodim spraying. Moreover, other gas-exchange properties were altered. Furthermore, accumulation of high amounts of carbohydrates, proteins and proline were detected. SA spraying three days prior clethodim application caused partially or totally disappearance of clethodim injuries and kept the leaves similar to those of control. Improved photosynthesis and enhanced pigments content were observed in leaves treated with SA. Other analyzed parameters showed values similar to those of the corresponding control. From the experimental work, an evidenced role of SA working against clethodim effects was suggested and discussed in this paper., D. E. M. Radwan, D. M. Soltan., and Obsahuje bibliografii
Prolonged agonist stimulation results in specific transfer of activated Gα subunits of Gqα/G11α family from particulate membrane fraction to soluble (cytosol) cell fraction isolated as 250 000 x g supernatant. In this study, we have used 2D electrophoresis for more defined resolution of Gα subunits of Gqα/G11α family and followed the time course of solubilization effect. The small signal of soluble G proteins was already detected in control, hormone-unexposed cells. Hormone stimulation resulted in a slow but continuous increase of both intensity and number of immunoreactive signals/spots of these G proteins (10, 30, 60, 120 and 240 min). At longer times of agonist exposure (>2 hours), a marked increase of Gqα/G11α proteins was detected. The maximal level of soluble Gqα/G11α proteins was reached after 16 hours of continuous agonist exposure. At this time interval, eight individual immunoreactive signals of Gqα/G1 α proteins could be resolved. The relative proportion among these spots was 15:42:10:11:7:7:2:5. Solubilization of this class of Gα proteins was thus observed after prolonged agonist stimulation only, induced by ultra high concentration of hormone and in cells expressing a large number of GPCRs. Our data therefore rather indicate tight/persisting binding of Gqα/G11α proteins to the membrane., D. Durchánková, J. Novotný, P. Svoboda., and Obsahuje bibliografii a bibliografické odkazy
Characterisation of proteases degrading ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO, EC: 4.1.1.39) was studied in the cowpea leaf during monocarpic senescence 3 and 9 d after flowering (DAF), representing early and mid pod fill. The stage at 3 DAF coincided with decrease in the metabolic parameters characterising senescence, i.e., contents of total soluble proteins, RuBPCO, and leaf nitrogen. At 9 DAF, there was a decline in total soluble proteins and an appearance of a 48 kDa cysteine protease. Characterisation of the proteases was done using specific inhibitors. Subcellular localisation at 3 DAF was studied by following the degradation of RuBPCO large subunit (LSU) in the vacuole lysates using immunoblot analyses. Cysteine proteases played a predominant role in the degradation of RuBPCO LSU at the crude extract level. At 9 DAF, expression of cysteine protease isoforms was monitored using polyclonal antibodies against papain and two polypeptides of molecular masses 48 and 35 kDa were observed in the vacuole lysates. We confirmed thus the predominance of cysteine proteases in the vacuoles during different stages of pod development in cowpea leaf. and B. Srivalli, Sudhakar Bharti, Renu Khanna-Chopra.
Seedlings of Cyamopsis tetragonoloba were grown on Petri dishes either in water or water plus 3 % PEG-6000 to induce water stress. The senescing cotyledons experiencing the stress exhibited loss in contents of leaf proteins and chlorophyll (Chl) and a decline in oxygen evolution. The effect of PEG treatment was more pronounced at moderate (MI) than low (LI) irradiance. The stress-induced loss in the activity of superoxide dismutase and increase in the thylakoid lipid peroxidation accompanied a change in the physical status of the bilayer membrane as demonstrated by an enhancement of room temperature Chl a fluorescence polarization and decrease in energy transfer efficiency in pigment assembly. This resulted in a sustained decrease in photosystem 2 activity blocking channels of energy utilization. The absorbed quanta, thus unutilized, were excess even at MI, leading to photoinhibitory response. and P. M. Deo, U. C. Biswal, B. Biswal.