We investigated the effect of enhanced atmospheric ammonia (NH3) in combination with low and high nitrogen (LN and HN, respectively) growth medium on photosynthetic characteristics of two maize (Zea mays L.) cultivars (NE5 with high- and SD19 with low N-use efficiency) across long-term growth period and their diurnal change patterns exposed to 10 nl l-1 and 1,000 nl l-1 NH3 fumigation in open-top chambers (OTCs). Regardless of the level of N in medium, increased NH3 concentration promoted maximum net photosynthetic rate (Pmax) and apparent quantum yield (AQY) of both cultivars at earlier growth stages, but inhibited Pmax of NE5 from silking to maturity stage and that of SD19 at maturity stage only above the ambient concentration. Greater positive/less negative responses were predominant in the LN than in the HN treatment, especially for SD19. Dark respiration rate (RD) remained more enhanced in the LN than in the HN treatment for SD19 as well as increased in the LN while decreased in the HN treatment for NE5 at their silking stage, following exposure to elevated NH3 concentration. Additionally, enhanced atmospheric NH3 increased net photosynthetic rate (PN) and stomatal conductance (gs) but reduced intercellular CO2 concentration (Ci) of both cultivars with either the LN or HN treatment during the diurnal period at tasseling stage. The diurnal change patterns of PN and gs showed bimodal curve type and those of Ci presented single W-curve type for NE5, when NH3 concentration was enhanced. As for SD19, single-peak curve type was showed for both PN and gs while single V-curve type for Ci. All results supported the hypothesis that appropriately enhanced atmospheric NH3 can increase assimilation of CO2 by improving photosynthesis of maize plant, especially at earlier growth stages and after photosynthetic "noon-break" point. These impacts of elevated NH3 concentration were more beneficial for SD19 as compared to those for NE5, especially in the LN supply environment. and L. X. Zhang ... [et al.].
Spatial heterogeneity of chlorophyll (Chl) fluorescence over thalli of three foliose lichen species was studied using Chl fluorescence imaging (CFI) and slow Chl fluorescence kinetics supplemented with quenching analysis. CFI values indicated species-specific differences in location of the most physiologically active zones within fully hydrated thalli: marginal thallus parts (Hypogymnia physodes), central part and close-to-umbilicus spots (Lasallia pustulata), and irregulary-distributed zones within thallus (Umbilicaria hirsuta). During gradual desiccation of lichen thalli, decrease in Chl fluorescence parameters (FO - minimum Chl fluorescence at point O, FP - maximum Chl fluorescence at P point, Φ2 - effective quantum yield of photochemical energy conversion in photosystem 2) was observed. Under severe desiccation (>85 % of water saturation deficit), substantial thalli parts lost their apparent physiological activity and the resting parts exhibited only a small Chl fluorescence. Distribution of these active patches was identical with the most active areas found under full hydration. Thus spatial heterogeneity of Chl fluorescence in foliose lichens may reflect location of growth zones (pseudomeristems) within thalli and adjacent newly produced biomass. When exposed to high irradiance, fully-hydrated thalli of L. pustulata and U. hirsuta showed either an increase or no change in FO, and a decrease in FP. Distribution of Chl fluorescence after the high irradiance treatment, however, remained the same as before the treatment. After 60 min of recovery in the dark, FO and FP did not recover to initial values, which may indicate that the lichen used underwent a photoinhibition. The CFI method is an effective tool in assessing spatial heterogeneity of physiological activity over lichen thalli exposed to a variety of environmental factors. It may be also used to select a representative area at a lichen thallus before application of single-spot fluorometric techniques in lichens. and M. Barták, J. Hájek, J. Gloser.
This paper reports effects of ultraviolet B (UVB) radiation on leaf anatomy and contents of chlorophyll and carotenoids, as well as photosynthetic parameters, in young sporophytes of Acrostichum danaeifolium Langsd. & Fisch. (Polypodiopsida, Pteridaceae) exposed to UV radiation treatments for 1 h daily for six weeks. The leaves showed large aerenchyma and present chloroplasts in both epidermises. After cultivation under PAR + UVA + UVB, leaves showed curling and malformed stomata on the abaxial face. After the UV treatment, chloroplasts in leaves were arranged against the inner wall of the epidermal cells. Transmission electron microscopy analysis showed some dilated thylakoids and plastoglobuli in chloroplasts and vesicles containing phenolic compounds in the cytoplasm. Differences were not observed between control and UV-treated plants in their contents of chlorophylls, carotenoids, and photosynthetic parameters. A. danaeifolium grown in sunny mangrove environment seems to have mechanisms preventing photosystem damage., A. M. Fonini, J. B. Barufi, É. C. Schmidt, A. C. Rodrigues, Á. M. Randi., and Obsahuje bibliografii
a1_Leaf traits and physiology are species-specific and various with canopy position and leaf age. Leaf photosynthesis, morphology and chemistry in the upper and lower canopy positions of Pinus koraiensis Sieb. et Zucc and Quercus mongolica Fisch. ex Turoz in broadleaved Korean pine forest were determined in September 2009. Canopy position did not significantly affect light-saturated photosynthetic rate based on unit area (P area) and unit dry mass (P mass), apparent quantum yield (α), light compensation point (LCP), light saturation point (LSP); total nitrogen (Nm), phosphorus (Pm), carbon (Cm), and chlorophyll content (Chlm) per unit dry mass; leaf dry mass per unit area (LMA) and photosynthetic nitrogen-use efficiency (PNUE) for P. koraiensis current-year needles and Q. mongolica leaves. While in P. koraiensis one-year-old needles, P area, P mass, α and LCP in the upper canopy were lower than those in the lower canopy. The needles of P. koraiensis had higher Cm and LMA than leaves of Q. mongolica, but P mass, Chlm and PNUE showed opposite trend. There were no differences in P area, LSP, Nm, and Pm between the two species. Needle age significantly influenced photosynthetic parameters, chemistry and LMA of P. koraiensis needles except LCP, LSP and Cm. In contrast to LMA, P area, P mass, Nm, Pm, Chlm, and PNUE of one-year-old needles were significantly lower than those of current-year needles for P. koraiensis. The negative correlations between LMA and
P mass, Nm, Pm, Chlm, and positive correlations between P mass and Nm, Pm, Chlm were found for P. koraiensis current-year needles and Q. mongolica leaves., a2_ Our results indicate that leaf nitrogen and phosphorus contents and nutrient absorption from soil are similar for mature P. koraiensis and Q. mongolica growing in the same environment, while difference in carbon content between P. koraiensis and Q. mongolica may be attributed to inherent growth characteristics., X. B. Cheng ... [et al.]., and Obsahuje bibliografii
Pulses of rainfall are particularly pivotal in controlling plant physiological processes in ecosystems controlled by limited water, and the response of desert plants to rainfall is a key to understanding the responses of desert ecosystems to global climatic change. We used a portable photosynthesis system to measure the responses of the diurnal course of photosynthesis, light-response curves, and CO2-response curves of two desert shrubs (Nitraria sphaerocarpa Maxim. and Calligonum mongolicum Turcz) to a rainfall pulse in a desert-oasis ecotone in northwestern China. The photosynthetic parameters, light- and CO2-response curves differed significantly before and after the rainfall pulse. Their maximum net photosynthetic rate (PN) values were 23.27 and 32.92 μmol(CO2) m-2 s-1 for N. sphaerocarpa and C. mongolicum, respectively, with corresponding maximum stomatal conductance (gs) values of 0.47 and 0.39 mol(H2O) m-2 s-1. The PN of N. sphaerocarpa after the rainfall was 1.65 to 1.75 times the value before rainfall, whereas those of C. mongolicum increased to approximately 2 times the prerainfall value, demonstrating the importance of the desert plants response by improving their assimilation rate to precipitation patterns under a future climate., B. Liu, W. Z. Zhao, Z. J. Wen., and Obsahuje bibliografii
High salt concentration is a major abiotic stress limiting plant growth and productivity in many areas of the world. Elaeagnus angustifolia L. adapts to adverse environments and is widely planted in the western region of China as a windbreaker and for landscape and soil stabilization. High salt concentrations inhibited photosynthesis of E. angustifolia, but the mechanism is not known. In this paper, RNA-sequencing was used to investigate effects of salt stress on the photosynthetic characteristics of the species. In total, 584 genes were identified and involved in photosynthetic pathways. The downregulation of genes that encode key enzymes involved in photosynthesis and genes correlated to important structures in photosystem and light-harvesting complexes might be the main reason, particularly, the downregulation of the gene that encodes magnesium chelatase. This would decrease the activity of enzymes involved in chlorophyll synthesis and the downregulation of the key gene that encodes Rubisco, and thereby decreases enzyme activity and the protein content of Rubisco., J. Lin, J. P. Li, F. Yuan, Z. Yang, B. S. Wang, M. Chen., and Obsahuje bibliografii