a1_Leaf traits and physiology are species-specific and various with canopy position and leaf age. Leaf photosynthesis, morphology and chemistry in the upper and lower canopy positions of Pinus koraiensis Sieb. et Zucc and Quercus mongolica Fisch. ex Turoz in broadleaved Korean pine forest were determined in September 2009. Canopy position did not significantly affect light-saturated photosynthetic rate based on unit area (P area) and unit dry mass (P mass), apparent quantum yield (α), light compensation point (LCP), light saturation point (LSP); total nitrogen (Nm), phosphorus (Pm), carbon (Cm), and chlorophyll content (Chlm) per unit dry mass; leaf dry mass per unit area (LMA) and photosynthetic nitrogen-use efficiency (PNUE) for P. koraiensis current-year needles and Q. mongolica leaves. While in P. koraiensis one-year-old needles, P area, P mass, α and LCP in the upper canopy were lower than those in the lower canopy. The needles of P. koraiensis had higher Cm and LMA than leaves of Q. mongolica, but P mass, Chlm and PNUE showed opposite trend. There were no differences in P area, LSP, Nm, and Pm between the two species. Needle age significantly influenced photosynthetic parameters, chemistry and LMA of P. koraiensis needles except LCP, LSP and Cm. In contrast to LMA, P area, P mass, Nm, Pm, Chlm, and PNUE of one-year-old needles were significantly lower than those of current-year needles for P. koraiensis. The negative correlations between LMA and
P mass, Nm, Pm, Chlm, and positive correlations between P mass and Nm, Pm, Chlm were found for P. koraiensis current-year needles and Q. mongolica leaves., a2_ Our results indicate that leaf nitrogen and phosphorus contents and nutrient absorption from soil are similar for mature P. koraiensis and Q. mongolica growing in the same environment, while difference in carbon content between P. koraiensis and Q. mongolica may be attributed to inherent growth characteristics., X. B. Cheng ... [et al.]., and Obsahuje bibliografii
4-year-old Pinus koraiensis, planted in open-top chambers at Changbai Mountain Station, received three different treatments [700 µmol(CO2) mol-1 = EC, control chamber = CC, and field = F]. Saturated net photosynthetic rate (PN) was 62 % higher in EC plants compared to CC and F plants as shown by PAR/PN response curves. Despite the increased PN, EC plants still showed decreased photosynthetic capacity when compared with CC and F plants at the same measurement CO2 concentration. EC plants had the highest stomatal conductance (gs) and ratio of intercellular to ambient CO2 concentration (Ci/Ca) compared with CC and F plants when measured at the same CO2 concentration. The Ci/Ca ratio was a sensitive indicator of stomatal behaviour, but not of photosynthesis. The responses of gs to EC did not correlate in magnitude or direction with responses of PN to EC. There was no significant difference in the number of stomata lines and stomata between EC and Ca. and Y. M. Zhou, S. J. Han.