We studied the developmental changes in photosynthetic and respiration rates and thermal dissipation processes connected with chloroplasts and mitochondria activity in etiolated wheat (Triticum aestivum L., var. Irgina) seedlings during the greening process. Etioplasts gradually developed into mature chloroplasts under continuous light [190 μmol(photon) m-2 s-1] for 48 h in 5-day-dark-grown seedlings. The net photosynthetic rate of irradiated leaves became positive after 6 h of illumination and increased further. The first two hours of de-etiolation were characterized by low values of maximum (Fv/Fm) and actual photochemical efficiency of photosystem II (PSII) and by a coefficient of photochemical quenching in leaves. Fv/Fm reached 0.8 by the end of 24 h-light period. During greening, energy-dependent component of nonphotochemical quenching of chlorophyll fluorescence, violaxanthin cycle (VXC) operation, and lipoperoxidation activity changed in a similar way. Values of these parameters were the highest at the later phase of de-etiolation (4-12 h of illumination). The respiration rate increased significantly after 2 h of greening and it was the highest after 4-6 h of illumination. It was caused by an increase in alternative respiration (AP) capacity. The strong, positive linear correlation was revealed between AP capacity and heat production in greening tissues. These results indicated that VXC in chloroplasts and AP in mitochondria were intensified as energy-dissipating systems at the later stage of greening (after 4 h), when most of prolamellar bodies converted into thylakoids, and they showed the greatest activity until the photosynthetic machinery was almost completely developed. and E. V. Garmash ... [et al.].
Two different pathways for protochlorophyllide a (Pchlide) reduction in photosynthetic organisms have been proved: one is strictly light-dependent whereas the second is light-independent. Both pathways occur in all photosynthetic cells except in angiosperms which form chlorophyll only through the light-dependent pathway. Most cells belonging to Eubacteria (i.e., the anoxygenic photosynthetic bacteria) synthesize bacteriochlorophyll through the light-independent pathway. This review deals with the physiological, biochemical, and molecular biological features of molecules involved in both pathways of Pchlide reduction.
High salt concentration is a major abiotic stress limiting plant growth and productivity in many areas of the world. Elaeagnus angustifolia L. adapts to adverse environments and is widely planted in the western region of China as a windbreaker and for landscape and soil stabilization. High salt concentrations inhibited photosynthesis of E. angustifolia, but the mechanism is not known. In this paper, RNA-sequencing was used to investigate effects of salt stress on the photosynthetic characteristics of the species. In total, 584 genes were identified and involved in photosynthetic pathways. The downregulation of genes that encode key enzymes involved in photosynthesis and genes correlated to important structures in photosystem and light-harvesting complexes might be the main reason, particularly, the downregulation of the gene that encodes magnesium chelatase. This would decrease the activity of enzymes involved in chlorophyll synthesis and the downregulation of the key gene that encodes Rubisco, and thereby decreases enzyme activity and the protein content of Rubisco., J. Lin, J. P. Li, F. Yuan, Z. Yang, B. S. Wang, M. Chen., and Obsahuje bibliografii