Salt stress is one of the most critical factors hindering the growth and development of plants. Paclobutrazol (PBZ) is widely used to minimize this problem in agriculture because it can induce salt stress tolerance in plants. This study investigated the effects of PBZ on salt tolerance of seedlings from two Chinese bayberry cultivars (i.e., Wangdao and Shenhong). Plants were treated with three salt concentrations (0, 0.2, and 0.4 % NaCl) and two PBZ concentrations (0 and 2.0 μmol L-1). Application of PBZ increased a relative water content, proline content, chlorophyll (a+b) content, and antioxidant enzyme activities in both cultivars, resulting in a better acclimation to salt stress and an increase in dry matter production. We concluded that PBZ ameliorated the negative effects of salt stress in Chinese bayberry seedlings., Y. Hu, W. Yu, T. Liu, M. Shafi, L. Song, X. Du, X. Huang, Y. Yue, J. Wu., and Obsahuje bibliografii
Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (A GC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No diffe rence were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondr ia by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes., X: Zeng, J. Wu, Q. Wu, J. Zhang., and Obsahuje bibliografii
a1_Leaf traits and physiology are species-specific and various with canopy position and leaf age. Leaf photosynthesis, morphology and chemistry in the upper and lower canopy positions of Pinus koraiensis Sieb. et Zucc and Quercus mongolica Fisch. ex Turoz in broadleaved Korean pine forest were determined in September 2009. Canopy position did not significantly affect light-saturated photosynthetic rate based on unit area (P area) and unit dry mass (P mass), apparent quantum yield (α), light compensation point (LCP), light saturation point (LSP); total nitrogen (Nm), phosphorus (Pm), carbon (Cm), and chlorophyll content (Chlm) per unit dry mass; leaf dry mass per unit area (LMA) and photosynthetic nitrogen-use efficiency (PNUE) for P. koraiensis current-year needles and Q. mongolica leaves. While in P. koraiensis one-year-old needles, P area, P mass, α and LCP in the upper canopy were lower than those in the lower canopy. The needles of P. koraiensis had higher Cm and LMA than leaves of Q. mongolica, but P mass, Chlm and PNUE showed opposite trend. There were no differences in P area, LSP, Nm, and Pm between the two species. Needle age significantly influenced photosynthetic parameters, chemistry and LMA of P. koraiensis needles except LCP, LSP and Cm. In contrast to LMA, P area, P mass, Nm, Pm, Chlm, and PNUE of one-year-old needles were significantly lower than those of current-year needles for P. koraiensis. The negative correlations between LMA and
P mass, Nm, Pm, Chlm, and positive correlations between P mass and Nm, Pm, Chlm were found for P. koraiensis current-year needles and Q. mongolica leaves., a2_ Our results indicate that leaf nitrogen and phosphorus contents and nutrient absorption from soil are similar for mature P. koraiensis and Q. mongolica growing in the same environment, while difference in carbon content between P. koraiensis and Q. mongolica may be attributed to inherent growth characteristics., X. B. Cheng ... [et al.]., and Obsahuje bibliografii
Adjuvant therapy and radiotherapy improves the survival of patients with metastatic and locally advanced gastric cancer (GC). However, the resistance to radiotherapy limits its clinical usage. Rhotekin 2 (RTKN2) functions as an oncogene and confers resistance to ultraviolet B-radiation and apoptosis- inducing agents. Here, the role of RTKN2 in radiosensitivity of GC cell lines was investigated. RTKN2 was found to be elevated in GC tissues and cells. A series of functional assays revealed that overexpression of RTKN2 induced GC cell proliferation, promoted GC cell migration and invasion, while inhibiting GC cell apoptosis. However, silence of RTKN2 promoted GC cell apoptosis, while repressing GC cell proliferation, invasion and migration. GC cells were exposed to irradiation, and data from cell survival and apoptotic assays showed that knock-down of RTKN2 enhanced radiosensitivity of GC through up-regulation of apoptosis and down-regulation of proliferation in irradiation-exposed GC cells. Moreover, the protein expression of β-catenin and c-Myc in GC cells was enhanced by RTKN2 over-expression, but reduced by RTKN2 silence. Interference of RTKN2 down-regulated nuclear β-catenin expression, while up-regulating cytoplasmic β-catenin in GC. In conclusion, RTKN2 contributed to cell growth and radioresistance in GC through activation of Wnt/β-catenin signalling.
A field trial was conducted to determine the effect of nitrogen-enriched biochar on soil water content, plant’s photosynthetic parameters, and grain yield of spring wheat at the Dingxi Experimental Station during the 2014 and 2015 cropping seasons. Results showed that biochar applied with nitrogen fertilizer at a rate of 50 kg ha-1 of N (BN50) increased soil water content in the 0-30 cm depth range by approximately 40, 32, and 53% on average at anthesis, milking, and maturity, respectively, compared with
zero-amendment (CN0). Stomatal conductance and net photosynthetic rate after the BN50 treatment increased by approximately 40 to 50% compared to CN0. Soil water content and photosynthetic traits also increased in other treatments using straw plus nitrogen fertilizer, but to lesser extent than that of BN50. Grain yields were highest (1905 and 2133 kg ha-1 in 2014 and 2015, respectively) under BN50. From this, biochar appears to have a potential for its use with N-fertilizer as a cost-effective amendment for crop production in semiarid environments., S. Yeboah, R. Zhang, L. Cai, L. Li, J. Xie, Z. Luo, J. Wu, D. L. Antille., and Obsahuje bibliografii