We investigated seasonal patterns of photosynthetic responses to CO2 concentrations in Spartina alterniflora Loisel, an aerenchymous halophyte grass, from a salt marsh of the Bay of Fundy (NB, Canada), and from plants grown from rhizome in controlled-environment chambers. From late May to August, CO2 compensation concentrations (Γ) of field-grown leaves varied between 2.5-10.7 cm3(CO2) m-3, with a mean of 5.4 cm3(CO2) m-3. From September onwards field leaves showed CO2 compensation concentrations from 6.6-21.1 cm3(CO2) m-3, with a mean of 13.1 cm3 m-3 well into the C3-C4 intermediate range. The seasonal variability in Γ did not result from changing respiration, but rather from a sigmoidal response of net photosynthetic rate (PN) to applied CO2 concentration, found in all tested leaves but which became more pronounced late in the season. One explanation for the sigmoidal response of PN to external CO2 concentration could be internal delivery of CO2 from roots and rhizomes to bundle sheath cells via the aerenchyma, but the sigmoidal responses in S. alterniflora persisted out to the tips of leaves, while the aerenchyma extend only to mid-leaf. The sigmoidicity persisted when CO2 response curves were measured from low to high CO2, or from high to low CO2, and even when prolonged acclimation times were used at each CO2 concentration. and M. O. Bärlocher ... [et al.].
One-year-old olive trees (cv. Koroneiki) were grown in plastic containers of 50 000 cm3 under full daylight and 30, 60, and 90 % shade for two years. The effects of shade on leaf morphology and anatomy, including stomatal density and chloroplast structure, net photosynthetic rate (PN), stomatal conductance (gs), and fruit yield were studied. Shade reduced leaf thickness due to the presence of only 1-2 palisade layers and reduced the length of palisade cells and spongy parenchyma. The number of thylakoids in grana as well as in stroma increased as shade increased, while the number of plastoglobuli decreased in proportion to the reduced photosynthetically active radiation (PAR). The higher the level of shade, the lower the stomatal and trichome density, leaf mass per area (ALM), gs, and PN. Shade of 30, 60, and 90 % reduced stomatal density by 7, 16, and 27 %, respectively, while the corresponding reduction in PN was 21, 35, and 67 %. In contrast, chlorophyll a+b per fresh mass, and leaf width, length, and particularly area increased under the same shade levels (by 16, 33, and 81 % in leaf area). PN reduction was due both to a decrease in PAR and to the morphological changes in leaves. The effect of shade was more severe on fruit yield per tree (32, 67, and 84 %) than on PN indicating an effect on bud differentiation and fruit set. The olive tree adapts well to shade compared with other fruit trees by a small reduction in stomatal and trichome density, palisade parenchyma, and a significant increase in leaf area. and K. Gregoriou, K. Pontikis, S. Vemmos.
We examined differences in net photosynthetic rate (PN), transpiration rate (E), water use efficiency (WUE), ratio of substomatal to atmospheric CO2 concentration (Ci/Ca), cuticle thickness (CT), epidermis cell size (ECS), mesophyll cell size (MCS), vascular bundle size (VBS), tissue density (TD), and coefficient of water loss (k) in Sabina vulgaris as related to sex, shoot form, and leaf form. PN, E, WUE, Ci/Ca, MCS, VBS, and k varied with sex, whereas CT, ECS, and TD did not. These differences in physiology and anatomy between the female and male plants may be closely related with their reproduction behaviour. PN, E, Ci/Ca, CT, ECS, MCS, and VBS were significantly smaller in the erect shoots than in the prostrate shoots, WUE was just opposite; TD and k did not vary with shoot form. These changes in physiology with shoot form indicate that erect shoots may be more tolerant of water stress than prostrate shoots. PN, E, Ci/Ca, TD, and k were significantly greater in the spine leaves than in the scale leaves, whereas WUE, CT, ECS, MCS, and VBS followed the opposite trends. The changes in physiology and anatomy with leaf form suggest that scale leaves have higher drought-resistant and water-holding capacities than spine leaves. Measurements of field gas exchange showed that three-year-old seedlings had lower drought-resistance and higher water loss than five-year-old seedlings, which provides some evidence that seedling survival decreases with decreasing plant age. and W. M. He, X. S. Zhang, M. Dong.
This paper reports effects of ultraviolet B (UVB) radiation on leaf anatomy and contents of chlorophyll and carotenoids, as well as photosynthetic parameters, in young sporophytes of Acrostichum danaeifolium Langsd. & Fisch. (Polypodiopsida, Pteridaceae) exposed to UV radiation treatments for 1 h daily for six weeks. The leaves showed large aerenchyma and present chloroplasts in both epidermises. After cultivation under PAR + UVA + UVB, leaves showed curling and malformed stomata on the abaxial face. After the UV treatment, chloroplasts in leaves were arranged against the inner wall of the epidermal cells. Transmission electron microscopy analysis showed some dilated thylakoids and plastoglobuli in chloroplasts and vesicles containing phenolic compounds in the cytoplasm. Differences were not observed between control and UV-treated plants in their contents of chlorophylls, carotenoids, and photosynthetic parameters. A. danaeifolium grown in sunny mangrove environment seems to have mechanisms preventing photosystem damage., A. M. Fonini, J. B. Barufi, É. C. Schmidt, A. C. Rodrigues, Á. M. Randi., and Obsahuje bibliografii
Global climate change may act as a potent agent of natural selection within species with Mediterranean mountain ecosystems being particularly vulnerable. The aim of this research was to analyze whether the phenotypic plasticity of Sesleria nitida Ten. could be indicative of its future adaptive capability to global warming. Morphological, anatomical, and physiological leaf traits of two populations of S. nitida growing at different altitudes on Mount Terminillo (Italy) were analyzed. The results showed that leaf mass per unit leaf area, leaf tissue density, and total leaf thickness were 19, 3, and 31% higher in leaves from the population growing at 1,895 m a.s.l. (B site) than in leaves from the population growing at 1,100 m a.s.l. (A site), respectively. Net photosynthetic rate (PN) and respiration rate (RD) peaked in June in both A and B leaves [9.4 +- 1.3 μmol(CO2) m-2 s-1 and 2.9 +- 0.9 μmol(CO2) m-2 s-1, respectively] when mean air temperature was 16 +- 2°C. R D/P N was higher in B than in A leaves (0.35 +- 0.07 and 0.21 +- 0.03, respectively, mean of the study period). The mean plasticity index (PI = 0.24, mean of morphological, anatomical, and physiological leaf traits) reflected S. nitida adaptability to the environmental stress conditions at different altitudes on Mount Terminillo. Moreover, the leaf key traits of the two populations can be used to monitor wild populations over a long term in response to global change., L. Gratani, M. F. Crescente, V. D’Amato, C. Ricotta, A. R. Frattaroli, G. Puglielli., and Obsahuje bibliografii
Morpho-anatomical leaf traits and photosynthetic activity of two alpine herbs, Podophyllum hexandrum (shade-tolerant) and Rheum emodi (light-requiring), were studied under field (PAR>2 000 µmol m-2 s-1) and greenhouse (PAR 500 µmol m-2 s-1) conditions. Mesophyll thickness, surface area of mesophyll cells facing intercellular spaces (Smes), surface area of chloroplasts facing intercellular spaces (Sc), intercellular spaces of mesophyll cells (porosity), photon-saturated rate of photosynthesis per unit leaf area (PNmax), and ribulose-1,5-bisphosphate carboxylase/oxygenase activity decreased in the greenhouse with respect to the field and the decreases were significantly higher in R. emodi than in P. hexandrum. P. hexandrum had lower intercellular CO2 concentration than R. emodi under both irradiances. The differences in acclimation of the two alpine herbs to low irradiance were due to their highly unlikely changes in leaf morphology, anatomy, and PNmax which indicated that the difference in radiant energy requirement related to leaf acclimation had greater impact under low than high irradiance. and S. Pandey, N. Kumar, R. Kushwaha.
Light is a limiting factor in plant establishment and growth in the understory of forests. In this paper, we assessed acclimation capacity of Siparuna guianensis, an early secondary successional species. We used seedlings and saplings in three regeneration areas with different irradiance regimes to determine the traits that confer photoplasticity. We examined whether these traits differ at different developmental stages. Anatomical characteristics, photochemical efficiency, photosynthetic capacity, and growth were analyzed. Multivariate component analysis revealed the formation of six clusters: three for seedlings (one for each regeneration area) and three for saplings (following the same pattern of seedlings, considering the area). Increased irradiance favored photosynthetic performance, independently of the developmental stage. The same trend was observed for most data on chlorophyll (Chl) a fluorescence and the ratios of net photosynthetic rate/intercellular CO2 concentration (PN/Ci) and PN/PPFD. No parameter indicated photoinhibition stress. The CO2- and light-response curve data indicated that seedlings were already acclimated to tolerate variation in irradiance. Anatomical adaptations, such as thickness of leaf blade and of adaxial cuticle, were observed in individuals growing in areas with higher irradiation. Thinning of spongy parenchyma and higher investment into a plant height were observed in seedlings, possibly due to the vertical stratification of CO2 and light in the understory; because light is a more limiting resource than CO2 in the lower stratum of the forest. Photoplasticity in S. guianensis is associated with a set of morphological, anatomical, photochemical, and biochemical traits, whereas biochemical performance is best acclimated to variation in irradiance. These traits differed in seedlings and saplings but they were modulated mainly by irradiance in both developmental stages., T. O. Vieira, M. S. O. Degli-Esposti, G. M. Souza, G. R. Rabelo, M. Da Cunha, A. P. Vitória., and Obsahuje bibliografii
Diurnal variation in net photosynthetic rate (PN) of three-year-old plants of Ginkgo biloba was studied under open, O (receiving full sunlight), net-shade, NS (40 % of photosynthetically active radiation, PAR), or greenhouse, G (25 % PAR) conditions. In all three conditions, PN was higher in morning along with stomatal conductance (gs), and intercellular CO2 concentration (Ci), while leaf temperature and vapour pressure deficit were low. The O-plants exhibited a typical decline in PN during midday, which was not observed in NS-plants. This indicated a possible photoinhibition in O-plants as the ratio of variable to maximum fluorescence (Fv/Fm) and photosystem 2 (PS2) yield (ΦPS2) values were higher in the NS- and G-plants. On the contrary, stomatal density and index, chlorophyll a/b ratio, leaf thickness, and density of mesophyll cells were greater in O-plants. Further, higher PN throughout the day along with higher relative growth rate under NS as compared to O and G suggested the better efficiency of Ginkgo plants under NS conditions. Therefore, this plant species could be grown at 40 % irradiance to meet the ever-increasing demand of leaf and also to increase its export potential. and S. Pandey, S. Kumar, P. K. Nagar.
The effects of shade on the growth, leaf photosynthetic characteristics, and chlorophyll (Chl) fluorescence parameters of Lycoris radiata var. radiata were determined under differing irradiances (15, 65, and 100% of full irradiance) within pots. The HI plants exhibited a typical decline in net photosynthetic rate (PN) during midday, which was not observed in MI- and LI plants. This indicated a possible photoinhibition in HI plants as the ratio of variable to maximum fluorescence (Fv/Fm) value was higher and the minimal fluorescence (F0) was lower in the, and LI plants. Diurnal patterns of stomatal conductance (gs) and transpiration rate (E) were remarkably similar to those of PN at each shade treatments, and the intercellular CO2 concentration (Ci) had the opposite change trend. Under both shading conditions, the light saturation point, light compensation point and photon-saturated photosynthetic rate (Pmax) became lower than those under full sunlight, and it was the opposite for the apparent quantum yield (AQY). The higher the level of shade, the lower the integrated daytime carbon gain, stomatal and epidermis cell densities, specific leaf mass (SLM), bulb mass ratio (BMR), leaf thickness, and Chl a/b ratio. In contrast, contents of Chls per dry mass (DM), leaf area ratio (LAR), leaf mass ratio (LMR), leaf length, leaf area and total leaf area per plant increased under the same shade levels to promote photon absorption and to compensate for the lower radiant energy. Therefore, when the integrated daytime carbon gain, leaf area and total leaf area per plant, which are the main factors determining the productivity of L. radiata var. radiata plant, were taken into account together, this species may be cultivated at about 60-70% of ambient irradiance to promote its growth. and S. B. Zhou ... [[et al.].
Air-grown tobacco (Nicotiana tabacum L.) plants were transferred for one week into a low oxygen atmosphere (2 kPa O2, LO) to study both immediate and long-term effects of the suppression of photorespiration on net photosynthetic rate (PN), plant morphology, and chloroplast ultrastructure. The PN and the leaf conductance for CO2 increased upon exposure of attached tobacco leaves to LO. These results may suggest that under LO, external CO2 is used to consume the radiant energy normally utilized in photorespiration by net CO2 assimilation at the expense of an increased rate of transpiration. The increase in the coefficient of nonphotochemical fluorescence quenching indicates that under LO, (surplus) radiant energy is also dissipated as heat. Prolonged LO-treatment of tobacco resulted in a decrease in the PN (measured in air) and in a reduction in the number of starch grains in the chloroplasts. Concomitantly, large lipid globuli appeared in the chloroplasts and the distance between the thylakoids forming the grana decreased. These changes in the ultrastructure of chloroplasts may have contributed to the decline in the PN. The LO-treated plants were considerably smaller than the control plants maintained in air. This appears to have resulted from a reduction in the rate of leaf area expansion at the expense of an increase in the specific mass of the leaves. This long-term response to LO-treatment may allow the plants to conserve water. and A. Migge ... [et al.].