The age dependence of the photosynthetic performance, chlorophyll fluorescence and chloroplast ultrastructure of green form and Chl ft-deficient form (aurea) of tobacco Su/su mutant were compared. The most pronounced differences between the aurea and green tobacco found in young leaves diminished with leaf age. Slower accumulation of the photosynthetic pigments during the development of aurea leaves was accompanied by a slower accumulation of LHC antennae of both photosystems, particularly that of PS2, and by retention of an increase in the capacity of PS2 photochemistry, measured as Fy/FM The ratio Fv/Fm, however, increased rapidly during maturation of aurea leaves, and fmally the mature aurea leaves exhibited higher values of this ratio than the green ones. Rates of photosynthesis at saturating irradiance (Epiax) saturating CO2 concentration (/’sat) decreased with leaf age for both aurea and green tobacco, being always higher in aurea leaves than in leaves of green tobacco of comparable age. AU these characteristics indicated retarded development of aurea leaves. Also the chloroplast ultrastructure, particularly grana formation, exhibited slower development. The decrease in /Wx and with leaf age in both tobacco forms and retardation in the development of aurea leaves can explain higher value of usually found in aurea tobacco.
Changes in chloroplast ultrastructure and total content of endogenous cytokinins (CK) were studied during different phases of plant development in transgenic Pssu-ipt tobacco (Nicotiana tabacum L. cv. Petit Havana SR1). Permanent overproduction of CK was found in both rooted (SE) and grafted (G) Pssu-ipt plants in all phases of plant development with the peak in vegetative and flowering phase in the latter ones. No such a correlation was observed in SE on the contrary to control non-transgenic plants (SR1) and grafts (SRG), which showed also CK increase at juvenile and flowering phases. No significant differences in parameters of chloroplast ultrastructure, such as length of chloroplast, starch content, granum width, and number of thylakoids per granum, were proved between chloroplasts from young mature leaves of control and transgenic tobacco during plant ontogeny. Nevertheless, several anomalies in the ultrastructure of cell organelles were found in Pssu-ipt tobacco. Amoeboid shape of chloroplasts was often observed in connection with "tubular clusters" resembling peripheral reticulum. The distinct crystalline structures located in chloroplasts might be formed by LHC protein aggregates. Smaller crystals of unknown composition were found also in mitochondria. Numerous crystalline cores were present in peroxisomes. The alterations might be the result of imbalance of phytohormone content, degradation effect of CK overproduction, or the example of acclimation to permanent stress. and H. Synková, R. Pechová, R. Valcke.
With the aim to contribute to the elucidation of the role of phytohormones in response of plants to adverse environmental conditions, seedlings of Phaseolus vulgaris, Nicotiana tabacum, Beta vulgaris, and Zea mays were supplied with water, 100 µM abscisic acid (ABA), or 10 µM N6-benzyladenine (BA) immediately before imposition of water stress (WS). In all four species, contents of chlorophylls (Chls) and carotenoids were markedly decreased during WS and after rehydration only in plants pre-treated with water but not in those pre-treated with ABA or BA. Contents of pigments of xanthophyll cycle increased during WS more in plants pre-treated with ABA or BA than in those pre-treated with water, but the degree of their de-epoxidation was highest in the later. Similarly, the efficiency of photosystem 2, determined as variable to maximal Chl fluorescence ratio, was not markedly decreased in bean plants pre-treated with ABA or BA in contrast to those pre-treated with water. The imposed WS was not severe enough to damage chloroplast ultrastructure. However, different changes in a size of starch inclusions were observed. In bean plants, the amount of starch increased considerably in plants pre-treated with water, while it decreased in BA pre-treated plants and no change was found in ABA pre-treated ones. The starch content declined under WS in sugar beet and tobacco plants but only moderate changes were found in ABA or BA pre-treated plants. Thus the application of BA and especially of ABA reduced the negative effects of subsequent WS. and D. Haisel ... [et al.].
Distinct crystalloids were found in chloroplasts of transgenic Pssu-ipt tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) overproducing endogenous cytokinins. They were present both in rooted (T) and grafted (TC) transgenic plants contrary to control tobacco (C). The fractions enriched by crystalloids were isolated from chloroplasts using a continuous or a discontinuous Percoll gradient. Chlorophyll (Chl) fluorescence emission spectra at 77 K indicated the presence of aggregates of light-harvesting complex proteins (LHC2) that was not connected to reaction centres of photosystem 2 both in isolated chloroplasts and in the fraction of 80 % Percoll gradient from both types of transgenic tobacco. Further analyses, i.e. pigment contents, polypeptide composition by SDS-PAGE, and immunoblotting support our hypothesis that crystalloids inside chloroplasts of transgenic tobacco are formed by LHC2 aggregates. Treatment with two distinct detergents, chosen with respect to their effects (i.e. β-dodecyl maltoside or Triton X-100), resulted in different degree of disintegration of Chl a/b proteins in transgenic plants compared to the control. Electron microscopic observations and immunogold labelling with specific LHC2 antibodies carried on the resin embedded leaf sections or free suspensions of chloroplasts showed that gold particles were bound preferentially on the outer surface of crystalloids. Three-dimensional reconstruction of chloroplasts and crystalloids proved that paracrystalline structures varied moderately in their size and took up a significant portion of total chloroplast volume. and H. Synková ... [et al.].
The influence of viral infection caused by two different potyviruses, Potato virus Y (PVY) and Potato virus A (PVA) on plant metabolism and photosynthetic apparatus of Nicotiana tabacum L. cv. Samsun and cv. Petit Havana SR1 was studied. The main stress was focused on the activities of phosphoenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK). The analysis of the presence of viral proteins, enzyme activities, and different photosynthetic parameters showed the time dependent progress of viral infection and NADP-ME and PEPC activities. PVY caused significant response, while PVA affected both tobacco cultivars only slightly. Viral infection, namely PVY, affected more negatively photosynthetic apparatus of cv. Petit Havana SR1 than cv. Samsun. and H. Ryšlavá ... [et al.].
Differences between photosynthetic characteristics of chlorophyll (Chl) 6-deficient aurea mutant (Su/su) and the green (su/su) variety of Nicotiana tabacum were tested. Fully mature leaves of 3-5-month-old plants grown in potted soil were investigated. Main differences were found as follows: Respective Chl a and b contents were 3 and 5 times lower in aurea plants, while xanthophylls and carotenes contents per unit of Chl were higher. The content of light-harvesting complex (LHC) was lower and LHC composition differed in aurea mutant. PS 1 activity calculated per unit of Chl content was higher in aurea mutant. The green variety showed the lower photosynthetic rates (Pn) at saturating irradiances whether calculated on the Chl or leaf area basis. At excessive light declined with green plants. Carboxylation efficiency (CE) (CO2 response slope of Pjj at low CO2 concentrations) was higher for aurea mutant. Time- integrated intercellular CO2 concentrations derived from ^^C discrimination were higher for aurea mutant (304 cm^ m'^) than for green plants (283 cm^ m'^), which together with higher mean stomatal conductance in aurea matched CE differences.
Photosynthetic and growth characteristics of the control potato plants cv. Zvíkov and those transformed by Agrobacterium were compared during their cultivation in vitro in agar medium with 1 % saccharose, after having been transplanted into pots with soil, or growing from tubers in soil. The average leaf aiea, fresh and dry matter, chlorophyll a and b ratio, and contents calculated per fresh and diy matter of the leaf area were significantly higher in the control plants raised from tubers and in vitro cultivated than in the transplanted ones. The significant increase in oxygen evolution by leaf fragments was found only in the control potato plants raised from tubers. Differences between photochemical activities of chloroplasts isolated from control and transformed plants were statistically significant only when calculated per fresh leaf matter. Chloroplasts from transformed potato plants grown from tubers and from those cultivated in vitro exhibited higher activities of photosystems (PS) 2 and PS 1 independently on the donors and acceptors of electrons ušed. On the contrary, higher activities of both photosystems were found in chloroplasts isolated from the control plants transferred to soil.
Chlorophyll a fluorescence kinetics, net photosynthetic rate (PN), water relations, and photosynthetic pigment contents were studied during acclimation of in vitro grown tobacco to higher irradiance (HL; 700 μmol m-2 s-1). Plantlets were grown on medium containing sucrose in glass vessels (G-plants) or in Magenta boxes (M-plants) with better CO2 supply in the latter ones. The effect of HL was studied either (1) in plantlets grown under original in vitro conditions (closed vessels), (2) in in vitro plantlets exposed to ambient CO2 concentration (covers removed), or (3) in plantlets transplanted to ex vitro into pots with sand and nutrient solution. Higher PN, and fraction of closed photosystem 2 (PS2) centres (1 - qP), and lower content of xanthophyll cycle pigments were found in M-plants compared to G-plants. HL treatment caused photoinhibition particularly in plants kept in closed vessels. This was indicated by the decrease in the ratio of Fv/Fm and by the increase in non-photochemical quenching, 1 - qp, and content of xanthophyll cycle pigments. Better CO2 supply ensured by the removal of closure lead to the moderate reduction of symptoms of photoinhibition, although stomatal conductance (gs), transpiration rate (E), and PN were negatively affected. The main reason was the decrease in relative air humidity, which caused similar reduction of PN, E, and gs after the transfer of plantlets to ex vitro. Nevertheless, plant response to HL seemed not to be affected by any possible root injury caused by transfer to ex vitro. The differences in contents of xanthophyll cycle pigments, degree of de-epoxidation, PN, and quenching parameters between M- and G-plantlets were still significant 7 d after ex vitro transfer and HL acclimation. and Š. Semorádová, H. Synková, J. Pospíšilová.