Gas exchanges and leaf water potential (Ψw) of six-years-old trees of fourteen Prunus amygdalus cultivars, grafted on GF-677, were studied in May, when fruits were in active growing period, and in October, after harvesting. The trees were grown in the field under rain fed conditions. Predawn Ψw showed lower water availability in October compared with May. The lowest Ψw values at midday in May increased gradually afterwards, while in October they decreased progressively until night, suggesting a higher difficulty to compensate the water lost by transpiration. However, relative water content (RWC) measured in the morning was similar in both periods, most likely due to some rainfall that occurred in September and first days of October that could be enough to re-hydrate canopy without significantly increasing soil water availability. The highest net photosynthetic rate (PN) was found in both periods early in the morning (08:00-11:00). Reductions in PN from May to October occurred in most cultivars except in José Dias and Ferrastar. In all cultivars a decrease in stomatal conductance (gs) was observed. Photosynthetic capacity (Pmax) did not significantly change from spring to autumn in nine cultivars, revealing a high resistance of photosynthetic machinery of this species to environmental stresses, namely high temperature and drought. Osmotic adjustment was observed in some cultivars, which showed reductions of ca. 23 % (Duro d' Estrada, José Dias) and 15 % (Tuono) in leaf osmotic potential (Ψπ). Such decreases were accompanied by soluble sugars accumulation. The Portuguese cultivar José Dias had a higher photosynthetic performance than the remaining genotypes. and M. C. Matos ... [et al.].
The effects of drought stress induced by polyethylene glycol, PEG (molecular mass 6000) on some ecophysiological characteristics of two wild pistachio species, Mastic and Khinjuk (P. mutica and P. khinjuk) selected as root stocks for production of edible pistachio trees (P. vera) in Iran and Turkey, were studied. Net photosynthetic rate (PN), stomatal conductance (gs), chlorophyll (Chl) fluorescence parameters, leaf water potential (Ψ1), leaf osmotic potential (Ψπ), leaf osmotic adjustment (ΔΨπ), and Chl a and b were measured. All parameters were influenced by increase in concentra-tion of PEG in the nutrient solutions. PN, gs, and Chl a were significantly higher in P. mutica than in P. khinjuk but, compared to the control treatment, P. khinjuk showed a higher resistance to drought stress than P. mutica. and A. Ranjbarfordoei ... [et al.].
Leaf water potential, leaf osmotic potential, chlorophyll a and b contents, stomatal conductance, net photosynthetic rate, and water use efficiency were determined in two pistachio species (Pistacia khinjuk L. and P. mutica L.) grown under osmotic drought stress induced by a combination of NaCl and polyethylene glycol 6000. A decrease in values for all mentioned variables was observed as the osmotic potential of the nutrient solution (Ψs) decreased. The osmotic adjustment (ΔΨπ) of the species increased by decreasing Ψs. Thus P. khinjuk had a higher osmotic drought stress tolerance than P. mutica. and A. Ranjbarfordoei ... [et al.].
Four plant species, Elymus mollis Trin., Carex kobomugi Ohwi, Glehnia littoralis F. Schmidt ex Miq., and Vitex rotundifolia L.f., are dominant perennial species in coastal sand dunes of Korea. We examined a physiological adaptation of these species by measurements of diurnal variation in photosynthesis and chlorophyll (Chl) fluorescence and solute patterns in leaves during one season (June), which is favorable for plant growth of all four species. All four species adopted different strategies in order to utilize radiation and to maintain water status under a fluctuating microclimate. Although the lowest water contents among four plant species was found, E. mollis with a high Chl and K+ content showed better photosynthetic performance, with high stomatal conductance (gs), net photosynthetic rate (PN), instantaneous carboxylation efficiency (CE), and water-use efficiency. Midday depression of PN in E. mollis and G. littoralis, without a reduction of gs, was associated with a reduction in CE and maximum photochemical efficiency of PSII, indicating nonstomatal limitation. Photosynthesis depression in both C. kobomugi and V. rotundifolia, with relatively low gs values, could be attributed to both stomatal and nonstomatal limitations. The high storage capacity for inorganic ions in E. molli, C. kobomugi, and G. littoralis may play an efficient role in regulating photosynthesis and maintaining leaf water status through stomatal control, and can also play an important role in osmotic adjustment., J.-S. Hwang, Y.-S. Choo., and Obsahuje bibliografii
Giant rosettes are ones of the most striking features of the vegetation in the high tropical Andes, with Coespeletia moritziana reaching the highest altitudes up to 4,600 m a.s.l. Different from other giant rosettes, this species grows on rock outcrops with poorly developed soils and where water availability may be limited. Two questions are addressed in this study: How does this species respond in terms of water relations to maintain favorable gas-exchange conditions? Considering that adult plants rely on a water-reserving central pith, how do early stages respond to this environment’s extreme conditions? Water relations and gas-exchange studies were carried out on juveniles, intermediate and adult C. moritziana plants during wet and dry seasons in Páramo de Piedras Blancas at 4,200 m a.s.l. Adult plants maintained higher leaf water potentials (ΨL) during the wet season, however, no differences between stages were found for the dry season. Minimum dry season ΨL were never near the turgor loss point in any of the stages. Juveniles show a more strict stomatal control during the dry season to maintain a favorable water status. Net photosynthesis significantly decreased in intermediate and juvenile stages from wet to dry seasons. Our results suggest that
C. moritziana resists more extreme conditions compared to other Andean giant rosettes., F. Rada, A. Azócar, A. Rojas-Altuve., and Obsahuje bibliografii