In the seasonally flooded forest of the Mapire River, a tributary of the Orinoco, seedlings remain totally covered by flood water for over six months. In order to characterize the physiological response to flooding and submergence, seedlings of the tree Pouteria orinocoensis, an important component of the forest vegetation, were subjected experimentally to flooding. Flooding was imposed gradually, the maximum level of flood including submerged and emerged leaves. After 45 d a severe reduction of net photosynthetic rate (PN) and stomatal conductance (g s) was observed in emerged leaves, whereas leaf water potential remained constant. The decrease in PN of emerged leaves was associated to an increase in both relative stomatal and non-stomatal limitations, and the maintenance of the internal/air CO2 concentration (C i/C a) for at least 20 d of flooding. After this time, both PN and gs became almost zero. The decrease in photosynthetic capacity of emerged leaves with flooding was also evidenced by a decrease in carboxylation efficiency; photon-saturated photosynthetic rate, and apparent quantum yield of CO2 fixation. Oxygen evolution rate of submerged leaves measured after three days of treatment was 7 % of the photosynthetic rate of emerged leaves. Submersion determined a chronic photoinhibition of leaves, viewed as a reduction in maximum quantum yield in dark-adapted leaves, whereas the chlorophyll fluorescence analysis of emerged leaves pointed out at the occurrence of dynamic, rather than chronic, photoinhibition. This was evidenced by the absence of photochemical damage, i.e. the maintenance of maximum quantum yield in dark-adapted leaves. Nevertheless, the observed lack of complementarity between photochemical and non-photochemical quenching after 12 d of flooding implies that the capacity for photochemical quenching decreased in a non-co-ordinate manner with the increase in non-photochemical quenching.
We studied the responses of leaf gas exchange and growth to an increase in atmospheric CO2 concentration in four tropical deciduous species differing in carbon fixation metabolism: Alternanthera crucis, C3-C4; Ipomoea carnea, C3; Jatropha gossypifolia, C3; and Talinum triangulare, inducible-CAM. In the first stage, plants were grown in one open-top chamber at a CO2 concentration of 560±40 μmol mol-1 (EC), one ambient CO2 concentration chamber (AC), and one unenclosed plot (U). In the second stage, plants were grown in five EC chambers (CO2 concentration = 680±30 μmol mol-1), five AC chambers, and five unenclosed plots. During the first weeks under EC in the first stage, plants of all the species had a very marked increase in their maximal net photosynthetic rates (Pmax) of 3.5 times on average; this stimulatory effect was maintained for 11-15 weeks, rates dampening afterward to values still higher than controls for 37 weeks. After a suspension of CO2 enrichment for 6 weeks, an increase in Pmax of EC plants over the controls was found in plants of all the species until week 82 of the experiment. Stomatal conductance (g) showed no response to EC. Carboxylation efficiency decreased in all the species under EC and this was correlated with a decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) content in all the species except for T. triangulare. During drought Pmax was higher in all species except for 7 triangulare, grown under EC relative to controls.
Ecosystem photosynthetic rates at EC were higher than in the controls during the second stage under irrigation as well as after 30 d of drought. and M. D. Fernández ... [et al.].
In order to determine whether stomatal closure alone regulates photosynthesis during drought under natural conditions, seasonal changes in leaf gas exchange were studied in plants of five species differing in life form and carbon fixation pathway growing in a thorn scrub in Venezuela. The species were: Ipomoea carnea, Jatropha gossypifolia, (C3 deciduous shrubs), Alternanthera crucis (C4 deciduous herb), and Prosopis juliflora and Capparis odoratissima (evergreen phreatophytic trees). Xylem water potential (Ψ) of all species followed very roughly the precipitation pattern, being more closely governed by soil water content in I. carnea and A. crucis. Maximum rate of photosynthesis, Pmax, decreased with Ψ in I. carnea, J. gossypifolia, and A. crucis. In I. carnea and J. gossypifolia stomatal closure was responsible for a 90 % decline in net photosynthetic rate (PN) as Ψ decreased from -0.3 to -2.0 MPa, since stomatal conductance (gs) was sensitive to water stress, and stomatal limitation on PN increased with drought. In A. crucis, PN decreased by 90 % at a much lower Ψ (-9.3 MPa), and gs was relatively less sensitive to Ψ. In P. juliflora and C. odoratissima, Pmax, gs, and intercellular CO2 concentration (Ci) were independent of soil water content. In the C3 shrubs stomatal closure was apparently the main constraint on photosynthesis during drought, Ci declining with Ψ in I. carnea. In the C4 herb, Ci was constant along the range of Ψ values, which suggested a coordinated decrease in both gs and mesophyll capacity. In P. juliflora Ci showed a slow decrease with Ψ which may have been due to seasonal leaf developmental changes, rather than to soil water availability. and W. Tezara ... [et al.].