Species composition and photosynthetic characteristics of dominant species of ungrazed plot (UG), overgrazed plot (OG), and restored grazed plot (RG) were determined in the Xilin River Basin, Inner Mongolia, China. Both heavily grazing and restoration significantly affected the composition of different species and life forms. Leymus chinensis, Stipa grandis, and Cleistogenes polyphylla, three dominant perennial grasses in UG plot, contributed 58.9 % aboveground biomass to that of whole community, and showed higher net photosynthetic rate (PN), transpiration rate (E), and intrinsic water-use efficiency (WUE). In OG plot, relative biomass of L. chinensis and S. grandis significantly decreased, while relative biomass of three shrubs/sub-shrubs, Caragana microphylla, Artemisia frigida, and Kochia prostrata, obviously increased. Heavy grazing significantly decreased PN, E, and WUE of L. chinensis and S. grandis, while shrubs/sub-shrubs showed significantly higher photosynthetic activity and WUE than the grasses. After 18-year restoration, photosynthetic activities of L. chinensis and S. grandis were significantly higher than those in the OG plot. The proportion of L. chinensis, S. grandis, and C. microphylla significantly increased, and relative biomass of C. polyphylla, A. frigida, and K. prostrata markedly declined in RG plot. We found close relationships between physiological properties of species and their competitive advantage in different land use types. Higher photosynthetic capability means more contribution to total biomass. The variations in physiological characteristics of plants could partly explain the changes in species composition during degrading and restoring processes of Inner Mongolia typical steppes. and S. P. Chen ... [et al.].
Plant growth, contents of photosynthetic pigments, photosynthetic gas exchange, and chlorophyll (Chl) fluorescence in soybean [Glycine max (L.) Merr. cv. Heinong37] were investigated after it was inoculated with Sinorhizobium fredii USDA191 or treated with 5 mM (NH4)2SO4 (N5) and 30 mM (NH4)2SO4 (N30), respectively. In the plants following N5 fertilization, not only plant biomass, leaf area, and Chl content, but also net photosynthetic rate (PN), stomatal conductance (gs), carboxylation efficiency (CE), maximum photochemical efficiency (Fv/Fm) of photosystem 2 (PS2), and quantum yield of PS2 (ΦPS2) were markedly improved as compared with the control plants. There were also positive effects on plant growth and plant photosynthesis after rhizobia inoculation, but the effects were much less than those of N5 fertilization. For N30 plants there were no significant positive effects on plant growth and photosynthetic capacity. Plant biomass, PN, and gs were similar to those of N-limited (control) plants. ΦPS2 and photochemical quenching (qP) were obviously declined while content of carotenoids and non-photochemical quenching (qN) were significantly enhanced in N30 treated plants. This indicated that excess N supply may cause some negative effects on soybean plants. and X.-J. Zhou ... [et al.].
IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide. Current studies have shown that the Th17/Treg immune balance may be involved in the occurrence of IgAN, but the exact mechanism is still unclear. Indoleamine 2,3-dioxygenase (IDO) is an enzyme that catalyses degradation of tryptophan (Trp) through the kynurenine (Kyn) pathway; it can control inflammation and immune response by inducing Trp starvation. IDO may be a key molecule in regulating the Th17/Treg immune balance. However, it is not clear whether IDO is involved in the IgAN disease occurrence by regulating the Th17/Treg immune balance. In this study, an IgAN mouse model was established. The mice were intraperitoneally inoculated with IDO inhibitor 1-MT or agonist
ISS-ODN to observe whether the IDO signalling pathway participates in the occurrence and development of IgAN by regulating the Th17/Treg immune balance. The results showed that IDO inhibitor 1-MT significantly increased renal injury and glomerular IgA accumulation and up-regulated Th17/Treg and Th17-related cytokine expression in IgAN mice, while ISS-ODN significantly decreased renal injury and glomerular IgA
accumulation, down-regulated Th17/Treg expression and inhibited Th17-related cytokine expression in IgAN mice. In conclusion, IDO was involved in the occurrence and progress of IgAN by regulating the Th17/Treg balance. and Corresponding author: Yumei Liang