Photosynthetic traits of two-year-old Japanese larch seedlings (Larix kaempferi Carr.) grown at elevated CO2 concentrations were studied in relation to structural changes in the needles. Seedlings were grown at two CO2 concentrations, 360 (AC) and 720 (EC) μmol mol-1 at high and low nutrient supply rates, high N (HN) and low N (LN). The photosynthetic capacity fell significantly in EC+LN, but increased significantly in EC+HN. Since the mesophyll surface area exposed to intercellular space per unit leaf area (Ames/A) is correlated with the photosynthetic rate, we measured Ames/A for larch needles growing in EC. Changes of Ames/A in both EC+HN and EC+LN were very similar to the changes in photosynthetic capacity. This suggests that the changes of Ames/A in EC probably caused the changes in the photosynthetic capacity. The changes of Ames/A in EC were attributed to changes in the mesophyll cell size and mesophyll cell number. The photosynthetic capacity in EC can be explained by taking morphological and structural adaptations into account as well as biochemical factors. and N. Eguchi ... [et al.].