Principal vasoactive systems - renin-angiotensin system (RAS), sympathetic nervous system (SNS), nitric oxide (NO) and prostanoids - exert their vascular effects through the changes in calcium levels and/or calcium sensitization. To estimate a possible modulation of calcium sensitization by the above vasoactive systems, we studied the influence of acute and chronic blockade of particular vasoactive systems on blood pressure (BP) changes elicited in conscious normotensive rats by acute dose-dependent administration of Rho-kinase inhibitor fasudil. Adult male chronically cannulated Wistar rats were used throughout this study. The acute inhibition of NO synthase (NOS) by L-NAME enhanced BP response to fasudil, the effect being considerably augmented in rats deprived of endogenous SNS. The acute inhibition of prostanoid synthesis by indomethacin modified BP response to fasudil less than the acute NOS inhibition. The chronic NOS inhibition caused moderate BP elevation and a more pronounced augmentation of fasudilinduced BP changes compared to the effect of acute NOS inhibition. This indicates both short-term and long-term NOdependent attenuation of calcium sensitization. Long-term inhibition of RAS by captopril caused a significant attenuation of BP changes elicited by fasudil. In contrast, a long-term attenuation of SNS by chronic guanethidine treatment (in youth or adulthood) had no effect on BP response to fasudil, suggesting the absence of SNS does not affect calcium sensitization in vascular smooth muscle of normotensive rats. In conclusion, renin-angiotensin system contributes to the long-term increase of calcium sensitization and its effect is counterbalanced by nitric oxide which decreases calcium sensitization in Wistar rats., A. Brunová, M. Bencze, M. Behuliak, J. Zicha., and Obsahuje bibliografii
The influence of chronic angiotensin ATi receptor blockade by specific antibody on the development of genetic hypertension was studied in young spontaneously hypertensive rats (SHR). The immunization of 4-week-old SHR with a small part of the angiotensin ATi receptor molecule attenuated the development of hypertension in these animals. After five subcutaneous injections of the antigen both systolic and diastolic blood pressures were significantly lower (p<0.005) in immunized SHR compared to sham- immunized SHR. No effect on blood pressure was seen in immunized Wistar-Kyoto control rats. We conclude that renin-angiotensin system might be partially involved in the development of hypertension in young spontaneously hypertensive rats because it can be attenuated by a specific antibody raised against a part of the angiotensin ATi receptor.
The agonists of α2-adrenergic receptors such as clonidine, rilmenidine or monoxidine are known to lower blood pressure (BP) through a reduction of brain sympathetic outflow but their chronic antihypertensive effects in rats with low-renin or highrenin forms of experimental hypertension were not studied yet. Moreover, there is no comparison of mechanisms underlying BP reduction elicited by chronic peroral (po) or intracerebroventricular (icv) clonidine treatment. Male salt-sensitive Dahl rats fed a high-salt (4% NaCl) diet and Ren-2 transgenic rats were treated with clonidine administered either in the drinking fluid (0.5 mg/kg/day po) or as the infusion into lateral brain ventricle (0.1 mg/kg/day icv) for 4 weeks. Basal BP and the contributions of renin-angiotensin system (captopril 10 mg/kg iv) or sympathetic nervous system (pentolinium 5 mg/kg iv) to BP maintenance were determined in conscious cannulated rats at the end of the study. Both peroral and intracerebroventricular clonidine treatment lowered BP to the same extent in either rat model. However, in both models chronic clonidine treatment reduced sympathetic BP component only in rats treated intracerebroventricularly but not in perorally treated animals. In contrast, peroral clonidine treatment reduced angiotensin IIdependent vasoconstriction in Ren-2 transgenic rats, whereas it lowered residual blood pressure in Dahl rats. In conclusions, our results indicate different mechanisms of antihypertensive action of clonidine when administered centrally or systemically.
The aim of the present study was to test the hypothesis that chronic hypoxia would aggrav ate hypertension in Ren-2 transgenic rats (TGR), a well-defined monogenetic model of hypertension with increased ac tivity of endogenous renin- angiotensin system (RAS). Systolic blood pressure (SBP) in conscious rats and mean arterial pressure (MAP) in anesthetized TGR and normotensive Hannover Sprague-Dawley (HanSD) rats were determined under normoxia that was either continuous or interrupted by two weeks' hypoxi a. Expression, activities and concentrations of individual components of RAS were studied in plasma and kidney of TGR and HanSD rats under normoxic conditions and after exposure to chronic hypoxia. In HanSD rats two weeks' exposure to chroni c hypoxia did not alter SBP and MAP. Surprisingly, in TGR it de creased markedly SBP and MAP; this was associated with substantial reduction in plasma and kidney renin activities and also of angiotensin II (ANG II) levels, without altering angiotensin-converting enzyme (ACE) activities. Simultaneously, in TGR the exposu re to hypoxia increased kidney ACE type 2 (ACE2) activity and angiotensin 1-7 (ANG 1-7) concentrations as compared with TGR under continuous normoxia. Based on these results, we propose that suppression of the hypertensiogenic ACE-ANG II axis in the circulation and kidney tissue, combined with augmentation of the intrarenal vasodilator ACE2-ANG 1-7 axis, is the main mechanism responsible for the blood pressure-lowering effects of chronic hypoxia in TGR., L. Červenka, J. Bíbová, Z. Husková, Z. Vańourková, H. J. Kramer, J. Herget, Š. Jíchová, J. Sadowski, V. Hampl., and Obsahuje bibliografii
The relationship between angiotensin II (ANG II) and endothelin-1 (ET-1) is known to be complex; both peptides can initiate and potentiate the gene expression of each other. This pilot study investigated the effects of the AT1 receptor blocker losartan or the direct renin inhibitor aliskiren on mean arterial pressure (MAP) and albuminuria and the renal ANG II and ET-1 levels. 3-month-old male Ren-2 transgenic rats (TGR) were treated either with losartan (5 mg kg-1 day-1) or aliskiren (10 mg kg-1 day-1) for 10 weeks. At the end of the experiment, rats were decapitated and cortical and papillary parts of kidneys were separated. Plasma and tissue ANG II levels were measured by RIA and tissue ET-1 concentrations by ELISA. In all four groups of animals ET-1 levels were lowest in renal cortex and more than 100-fold higher in the papilla. Cortical and papillary ET-1 concentrations in untreated TGR significantly exceeded those of control HanSD rats and were significantly depressed by both drugs. In both strains, papillary ANG II concentrations were moderately but significantly higher than cortical ANG II, TGR exhibited higher ANG II levels both in cortex and papilla as compared to control HanSD rats. Aliskiren and losartan at the doses used depressed similarly the levels of ANG II in cortex and papilla and reduced ET-1 significantly in the renal cortex and papilla below control levels in HanSD rats. Albuminuria, which was more than twice as high in TGR as in HanSD rats, was normalized with aliskiren and reduced by 28 % with losartan, although MAP was reduced to a similar degree by both drugs. Despite similar reductions of MAP and renal ET-1 and ANG II levels aliskiren appears to be more effective than losartan, at the doses used, in reducing albuminuria in heterozygous hypertensive Ren-2 rats., Z. Vaňourková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Tissue renin-angiotensin systems are known to behave differently from the circulating renin-angiotensin system (RAS). It has already been proposed that not only the circulating RAS, but also RAS localized in the cardiac tissue plays an important role in the heart failure. The objective of this study was to compare the gene expression of individual components of the renin-angiotensin system in hearts of normotensive and hypertensive rats. Two genetically hypertensive rat strains - spontaneously hypertensive rats (SHR) and hereditary hypertriglyceridemic rats (HTG) - were compared with Wistar-Kyoto (WKY) and Lewis (LEW) normotensive controls. In addition, developmental changes in gene expression of individual components of cardiac RAS were studied in 20-day-old fetuses, 2-day-old newborns and 3-month-old HTG and LEW rats. In our study, the angiotensinogen gene expression did not differ either among adult normotensive and hypertensive strains, or during development. In contrast, the renin gene expression was significantly increased in hearts of hypertensive compared to normotensive rats. Moreover, a 5-fold increase of renin mRNA was observed in hearts of HTG rats between day 2 and the third month of age. There was also an age-dependent increase of ACE gene expression in both HTG and LEW rats which was substantially delayed in HTG hearts. In conclusion, the results of our study suggest that overexpression of the cardiac renin gene in hypertensive strains could participate in the structural and functional changes of the heart during the development of hypertension., D. Jurkovičová, Z. Dobešová, J. Kuneš, O. Križanová., and Obsahuje bibliografii
We showed recently that increasing kidney epoxyeicosatrienoic acids (EETs) by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, retarded the development of renal dysfunction and progression of aorto-caval fistula(ACF)-induced congestive heart failure (CHF) in Ren-2 transgenic hypertensive rats (TGR). In that study the final survival rate of untreated ACF TGR was only 14 % but increased to 41 % after sEH blockade. Here we examined if sEH inhibition added to renin-angiotensin system (RAS) blockade would further enhance protection against ACF-induced CHF in TGR. The treatment regimens were started one week after ACF creation and the followup period was 50 weeks. RAS was blocked using angiotensinconverting enzyme inhibitor (ACEi, trandolapril, 6 mg/l) and sEH with an sEH inhibitor (sEHi, c-AUCB, 3 mg/l). Renal hemodynamics and excretory function were determined two weeks post-ACF, just before the onset of decompensated phase of CHF. 29 weeks post-ACF no untreated animal survived. ACEi treatment greatly improved the survival rate, to 84 % at the end of study. Surprisingly, combined treatment with ACEi and sEHi worsened the rate (53 %). Untreated ACF TGR exhibited marked impairment of renal function and the treatment with ACEi alone or combined with sEH inhibition did not prevent it. In conclusion, addition of sEHi to ACEi treatment does not provide better protection against CHF progression and does not increase the survival rate in ACF TGR: indeed, the rate decreases significantly. Thus, combined treatment with sEHi and ACEi is not a promising approach to further attenuate renal dysfunction and retard progression of CHF., P. Kala, L. Sedláková, P. Škaroupková, L. Kopkan, Z. Vaňourková, M. Táborský, A. Nishiyama, S. H. Hwang, B. D. Hammock, J. Sadowski, V. Melenovský, J. D. Imig, L. Červenka., and Obsahuje bibliografii
Critical illness induces among other events production of proinflammatory cytokines that in turn interfere with insulin signaling cascade and induce insulin resistance on a postreceptor level. Recently, local renin-angiotensin system of adipose tissue has been suggested as a possible contributor to the development of insulin resistance in patients with obesity. The aim of our study was to determine local changes of the renin-angiotensin system of subcutaneous and epicardial adipose tissue during a major cardiac surgery, which may serve as a model of an acute stress potentially affecting endocrine function of adipose tissue. Ten patients undergoing elective cardiac surgery were included into the study. Blood samples and samples of subcutaneous and epicardial adipose tissue were collected at the beginning and at the end of the surgery. Blood glucose, serum insulin and adiponectin levels were measured and mRNA for angiotensinogen, angiotensin-converting enzyme and angiotensin II type 1 receptor were determined in adipose tissue samples using RT PCR. Cardiac surgery significantly increased both insulin and blood glucose levels suggesting the development of insulin resistance, while serum adiponectin levels did not change. Expression of angiotensinogen mRNA significantly increased in epicardial adipose tissue at the end of surgery relative to baseline but remained unchanged in subcutaneous adipose tissue. Fat expression of angiotensin-converting enzyme and type 1 receptor for angiotensin II were not affected by surgery. Our study suggests that increased angiotensinogen production in epicardial adipose tissue may contribute to the development of postoperative insulin resistance., T. Roubíček, M. Dolinková, J. Bláha, D. Haluzíková, L. Bošanská, M. Mráz, J. Křemen, M. Haluzík., and Obsahuje bibliografii a bibliografické odkazy
The detailed mechanisms determining the course of congestive heart failure (CHF) and associated renal dysfunction remain unclear. In a volume overload model of CHF induced by creation of aorto- caval fistula (ACF) in Hannover Sprague -Dawley (HanSD) rats we explored the putative pathogenetic contribution of epoxyeicosatrienoic acids (EETs), active products of CYP -450 dependent epoxygenase pathway of arachidonic acid metabolism, and compared it with the role of the renin-angiotensin system (RAS). Chronic treatment with cis -4-[4-(3-adamantan -1-yl- ureido) cyclohexyloxy]benzoic acid (c-AUCB, 3 mg /l in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and m yocardial EETs to levels observed in sham -operated HanSD rats, but did not improve the survival or renal function impairment. In contrast, chronic angiotensin -converting enzyme inhibition (ACEi, trandolapril, 6 mg /l in drinking water) increased renal blood flow, fractional sodium excretion and markedly improved survival, without affecting left ventricular structure and performance. Hence, renal dysfunction rather than cardiac remodeling determines long-term mortality in advanced stage of CHF due to volume o verload. Strong protective actions of ACEi were associated with suppression of the vasoconstrictor/sodium retaining axis and activation of vasodilatory/natriuretic axis of the renin -angiotensin system in the circulating blood and kidney tissue., L. Červenka, V. Melenovský, Z. Husková, A. Sporková, M. Bürgelová, P. Škaroupková, S. H. Hwang, B. D. Hammock, J. D. Imig, J. Sadowski., and Obsahuje bibliografii
The present study was performed to evaluate the role of intrapulmonary activity of the two axes of the renin-angiotensin system (RAS): vasoconstrictor angiotensin-converting enzyme (ACE)/angiotensin II (ANG II)/ANG II type 1 receptor (AT 1 ) axis, and vasodilator ACE type 2 (ACE2)/angiotensin 1-7 (ANG 1-7)/ Mas receptor axis, in the development of hypoxic pulmonary hypertension in Ren-2 transgenic rats (TGR). Transgene-negative Hannover Sprague-Dawley (HanSD) ra ts served as controls. Both TGR and HanSD rats responded to two weeks' exposure to hypoxia with a significant increase in mean pulmonary arterial pressure (MPAP), however, the increase was much less pronounced in the former. The attenuation of hypoxic pulmonary hypertension in TGR as compared to HanSD rats was associated with inhibition of ACE gene expression and activity, inhibition of AT 1 receptor gene expression and suppression of ANG II levels in lung tissue. Simultaneously, there was an increase in lung ACE2 gene expression and activity and, in particular, ANG 1-7 concentrations and Mas receptor gene expression. We propose that a combination of su ppression of ACE/ANG II/AT 1 receptor axis and activation of ACE2/ANG 1-7/Mas receptor axis of the RAS in the lung tissue is the main mechanism explaining attenuation of hypoxic pulmonary hypertension in TGR as compared with HanSD rats., V. Hampl, J. Herget, J. Bíbová, A. Baňasová, Z. Husková, Z. Vaňourková, Š. Jíchová, P. Kujal, Z. Vernerová, J. Sadowski, L. Červenka., and Obsahuje bibliografii