Adiponectin (APN), an adipose tissue-excreted adipokine, plays protective roles in metabolic and cardiovascular diseases. In this study, the effects and mechanisms of APN on biological functions of rat vascular endothelial progenitor cells (VEPCs) were investigated in vitro . After administrating APN in rat VEPCs, the proliferation was measured by methyl thiazolyl tetrazolium (MTT) method, the apoptotic rate was test by Flow cytometry assay, mRNA expression of B-cell lymphoma-2 (Bcl-2) and vascular endothelial growth factor (VEGF) was determined by real-time reverse transcriptase polymerase chain reaction (RT-PCR), and protein expression of mechanistic target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3) and phospho-STAT3 (pSTAT3) was analyzed by Western blot. It was suggested that APN promoted the optical density (OD) value of VEPCs, enhanced mRNA expression of Bcl-2 and VEGF, and inhibited cell apoptotic rate. Furthermore, protein expression of pSTAT3 was also increased in the presence of APN. Moreover, APN changed-proliferation, apoptosis and VEGF expression of VEPCs were partially suppressed after blocking the mTOR-STAT3 signaling pathway by the mTOR inhibitor XL388. It was indicated that APN promoted biological functions of VEPCs through targeting the mTOR-STAT3 signaling pathway., Xiaoying Dong, Xia Yan, Wei Zhang, Shengqiu Tang., and Obsahuje bibliografii
Luteoloside (Lute), a bioactive natural ingredient, widely exists in nature and possesses hepatoprotective and hepatocyte proliferation-promoting properties. This study aimed to investigate whether Lute could counteract non-alcoholic fatty liver disease (NAFLD)-caused hepatocyte damage via its stimulation of hepatocyte regeneration efficacy and to explore the involved mechanism. LO2 cells and primary hepatocytes were used to examine the hepatocyte proliferation effects of Lute under physiological conditions and in the palmitic acid (PA)- induced in vitro model of NAFLD. STAT3 and cell cycle-related proteins (cyclin D1, c-myc and p21) were evaluated by Western blot. Under physiological conditions, LO2 cells and primary hepatocytes treated with various concentration of Lute for 12 and 24 h showed increased hepatocyte proliferation, especially with 20 μM treatment for 24 h. More notably, under the model conditions, co-incubation with 20 μM of Lute also markedly reversed PA-induced inhibition of cell proliferation and viability in primary hepatocytes. Mechanistically, Lute could activate STAT3 and subsequently increase cyclin D1 and cmyc expression, which positively regulates cell cycle progression, and decrease expression of p21, an inhibitor of cell cycle progression. Furthermore, Luteinduced hepatocyte proliferation-promoting efficacy was abolished by STAT3 inhibitor stattic. Collectively, Lute can alleviate PA-induced hepatocyte damage via activating STAT3-mediated hepatocyte regeneration.
Although statins exert non-lipid cardioprotective effects, their influence on cell death is not fully elucidated. For this purpose, we investigated whether simvastatin treatment (S, 10 mg/kg, 5 days) is capable of mitigating ischemia/reperfusion-induced (IR) apoptosis in the isolated rat hearts, which was examined using immunoblotting analysis. In addition, the content of signal transducer and activator of transcription 3 (STAT3) and its active form, phosphorylated STAT3 (pSTAT3-Thr705), was analyzed. Simvastatin induced neither variations in the plasma lipid levels nor alterations in the baseline content of analysed proteins with the exception of upregulation of cytochrome C. Furthermore, simvastatin significantly increased the baseline levels of pSTAT3 in contrast to the control group. In the IR hearts, simvastatin reduced the expression of Bax and non-cleaved caspase-3. In these hearts, phosphorylation of STAT3 did not differ in comparison to the non-treated IR group, however total STAT3 content was slightly increased. The improved recovery of left ventricular developed pressure co-existed with the increased Bcl- 2/Bax ratio. In conclusion, pleiotropic action of statins may ameliorate viability of cardiomyocytes by favouring the expression of anti-apoptotic Bcl-2 and downregulating the proapoptotic markers; however STAT3 does not seem to be a dominant regulator of this anti-apoptotic action of simvastatin., T. Rajtík, ... [et al.]., and Obsahuje seznam literatury