Various physiological characteristics of Cj and C4 plants (14 species) grown along a salinity gradient were studied. The majority of plants occupying salt-marshes were succulent chenopods, mainly C4 annuals. The ash content of assimilating organs of plants was higher and osmotic potential lower in species grown under increasing soil salinity. The plants of the NADP-ME group accumulated more K than Na. Large amounts of Na"^ and CT characterized the NAD-ME plants and perennial C3 plants from sites with high soil salinity, Net photosynthetic rate (P^) and chlorophyll content were decreased in species grown under high salinity. Dark respiration was depressed by salinity to a lesser extent than P^.
Two species with different resistances to alkaline pH, the glycophylic Triticum aestivum (wheat) and the halophilic Chloris virgata, were chosen as test organisms. The salt-alkaline (SA) mixed stress conditions with different buffer capacities (BC) but with the same salt molarities and pH were established by mixing neutral (NaCl, Na2SO4), and alkaline salts (NaHCO3 and Na2CO3) in various proportions. Growth, photosynthetic characteristics, and solute accumulation of the seedlings were monitored to test the validity of BC as a decisive index of alkali-stress (AS) intensity in SA mixed stress. At the same salinities and pHs, the relative growth rate, the content of photosynthetic pigments, and net photosynthetic rates of wheat and C. virgata decreased, while Na+ content and Na+/K+ ratios in shoots increased with increasing BC. Hence BC was a true measure of AS intensity at mixed SA stress and the alkali-resistance mechanism of plants was easy to interpret. BC of soil solution is an important parameter for estimating the alkalization degree of salt-alkalized soil. and C.-W. Yang ... [et al.].
Hippocampus is a brain structure containing vasopressin (AVP) fibers and specific binding sites for this peptide. There is growing evidence that AVP and its metabolites participate in glutamate-mediated plasticity of the hippocampus. The aim of the present study was to evaluate the influence of NMDA on AVP release in the rabbit hippocampus. Caudate nucleus was chosen as the reference structure. The mentioned brain structures were simultaneously microdialyzed with 0.9 % NaCl solution. AVP was determined in the outflowing fluid by radioimmunoassay. The mean basal AVP content in the fluid outflowing from the hippocampus was significantly greater than that from the caudate nucleus. The addition of K+ into the fluid perfusing the probes implanted into the hippocampus and caudate nucleus significantly increased AVP release into the extracellular fluid of both brain structures. NMDA applied into the mentioned brain structures increased AVP release only from the hippocampus but not from the caudate nucleus. Our findings indicate a role which NMDA receptors play in AVP release into the extracellular fluid of the hippocampus., M. Orłowska-Majdak, W. Z. Traczyk, D. Szymański., and Obsahuje bibliografii