Two species with different resistances to alkaline pH, the glycophylic Triticum aestivum (wheat) and the halophilic Chloris virgata, were chosen as test organisms. The salt-alkaline (SA) mixed stress conditions with different buffer capacities (BC) but with the same salt molarities and pH were established by mixing neutral (NaCl, Na2SO4), and alkaline salts (NaHCO3 and Na2CO3) in various proportions. Growth, photosynthetic characteristics, and solute accumulation of the seedlings were monitored to test the validity of BC as a decisive index of alkali-stress (AS) intensity in SA mixed stress. At the same salinities and pHs, the relative growth rate, the content of photosynthetic pigments, and net photosynthetic rates of wheat and C. virgata decreased, while Na+ content and Na+/K+ ratios in shoots increased with increasing BC. Hence BC was a true measure of AS intensity at mixed SA stress and the alkali-resistance mechanism of plants was easy to interpret. BC of soil solution is an important parameter for estimating the alkalization degree of salt-alkalized soil. and C.-W. Yang ... [et al.].
We examined the physiological and biochemical responses of two halophytic grasses with different photosynthetic pathways, Puccinellia tenuiflora (C3) and Chloris virgata (C4), to saline-alkaline stresses. Plants were grown at different Na2CO3 concentrations (from 0 to 200 mM). Low Na2CO3 (< 12.5 mM) enhanced seed germination and plant growth, whereas high Na2CO3 concentrations (> 100 mM) reduced seed germination by 45% in P. tenuiflora and by 30% in C. virgata. Compared to C. virgata, P. tenuiflora showed lower net photosynthesis, stomatal conductance, intercellular CO2 concentration, and water-use efficiency under the same treatment. C. virgata exhibited also relatively higher ATP content, K+ concentration, and the K+/Na+ ratio under the stress treatments implying that salt tolerance may be the main mechanism for salt resistance in this species. Our results demonstrated that the C. virgata was relatively more resistant to saline-alkaline stress than the co-occurring P. tenuiflora; both two species adapt to their native saline-alkaline habitat by different physiological mechanisms., C. Y. Guo, X. Z. Wang, L. Chen, L. N. Ma, R. Z. Wang., and Obsahuje bibliografii