Enzymes that hydrolyze extracellular ATP, i.e. ecto-ATPase and ecto-ATP diphosphohydrolase (ATPDase), can be differentiated by ability of the latter to hydrolyze ADP and by slightly different kinetic properties of the two enzymes. Synaptic plasma membrane fractions isolated from rat hippocampus and caudate nucleus exhibit ADP-hydrolyzing activity, as revealed by the enzyme assay, and the presence of ecto-ATPase protein, as revealed by immunological identification on Western blot. These findings indicate that both enzymes are co-expressed in the synaptic membrane compartment of hippocampal and caudate nucleus neurons. Kinetic analysis was performed to determine the relative contribution of each enzyme to the total ATP-hydrolyzing activity, while an inhibition study was carried out in order to exclude the interference of other nonspecific ATPase and phosphatase activities. Based on the kinetic properties, sensitivity to inhibitors and VATP/VADP ratio of about 2, we concluded that a substantial portion of ATP-hydrolyzing activity in both synaptic membrane preparations can be ascribed to the catalytic action of ATPDase. On the other hand, the highest catalytic efficacy when ATP is the substrate and the greater abundance of ecto-ATPase protein in caudate nucleus preparation suggest that the relative contribution of ecto-ATPase to the total ATP-hydrolyzing activity in the caudate nucleus is higher than in the hippocampus., N. Nedeljkovic, A. Banjac, A. Horvat, M. Stojiljkovic, G. Nikezic., and Obsahuje bibliografii
Hippocampus is a brain structure containing vasopressin (AVP) fibers and specific binding sites for this peptide. There is growing evidence that AVP and its metabolites participate in glutamate-mediated plasticity of the hippocampus. The aim of the present study was to evaluate the influence of NMDA on AVP release in the rabbit hippocampus. Caudate nucleus was chosen as the reference structure. The mentioned brain structures were simultaneously microdialyzed with 0.9 % NaCl solution. AVP was determined in the outflowing fluid by radioimmunoassay. The mean basal AVP content in the fluid outflowing from the hippocampus was significantly greater than that from the caudate nucleus. The addition of K+ into the fluid perfusing the probes implanted into the hippocampus and caudate nucleus significantly increased AVP release into the extracellular fluid of both brain structures. NMDA applied into the mentioned brain structures increased AVP release only from the hippocampus but not from the caudate nucleus. Our findings indicate a role which NMDA receptors play in AVP release into the extracellular fluid of the hippocampus., M. Orłowska-Majdak, W. Z. Traczyk, D. Szymański., and Obsahuje bibliografii