We compared the effects of salt-stresses (SS, 1: 1 molar ratio of NaCl to Na2SO4) and alkali-stresses (AS, 1: 1 molar ratio of NaHCO3 to Na2CO3) on the growth, photosynthesis, solute accumulation, and ion balance of barley seedlings, to elucidate the mechanism of AS (high-pH) damage to plants and the physiological adaptive mechanism of plants to AS. The effects of SS on the water content, root system activity, membrane permeability, and the content of photosynthetic pigments were much less than those of AS. However, AS damaged root function, photosynthetic pigments, and the membrane system, led to the severe reductions in water content, root system activity, content of photosynthetic pigments, and net photosynthetic rate, and a sharp increase in electrolyte leakage rate. Moreover, with salinity higher than 60 mM, Na+ content increased slowly under SS and sharply under AS. This indicates that high-pH caused by AS might interfere with control of Na+ uptake in roots and increase intracellular Na+ to a toxic level, which may be the main cause of some damage emerging under higher AS. Under SS, barley accumulated organic acids, Cl-, SO4 2-, and NO3 - to balance the massive influx of cations, the contribution of inorganic ions to ion balance was greater than that of organic acids. However, AS might inhibit absorptions of NO3 - and Cl-, enhance organic acid synthesis, and SO4 2- absorption to maintain intracellular ion balance and stable pH. and C.-W. Wang ... [et al.].
Two species with different resistances to alkaline pH, the glycophylic Triticum aestivum (wheat) and the halophilic Chloris virgata, were chosen as test organisms. The salt-alkaline (SA) mixed stress conditions with different buffer capacities (BC) but with the same salt molarities and pH were established by mixing neutral (NaCl, Na2SO4), and alkaline salts (NaHCO3 and Na2CO3) in various proportions. Growth, photosynthetic characteristics, and solute accumulation of the seedlings were monitored to test the validity of BC as a decisive index of alkali-stress (AS) intensity in SA mixed stress. At the same salinities and pHs, the relative growth rate, the content of photosynthetic pigments, and net photosynthetic rates of wheat and C. virgata decreased, while Na+ content and Na+/K+ ratios in shoots increased with increasing BC. Hence BC was a true measure of AS intensity at mixed SA stress and the alkali-resistance mechanism of plants was easy to interpret. BC of soil solution is an important parameter for estimating the alkalization degree of salt-alkalized soil. and C.-W. Yang ... [et al.].
Sunflowers were treated with mixing proportions of NaCl, Na2SO4, NaHCO3, and Na2CO3. Effects of salt and saltalkaline mixed stress on growth, photosynthesis, chlorophyll fluorescence, and contents of inorganic ions and organic acids of sunflower were compared. The growth of sunflower decreased with increasing salinity. The contents of photosynthetic pigments did not decrease under salt stress, but their contents decreased sharply under
salt-alkaline mixed stress. Net photosynthetic rates, stomatal conductance and intercellular CO2 concentration decreased obviously, with greater reductions under salt-alkaline mixed stress than under salt one. Fluorescence parameters showed no significant differences under salt stress. However, maximal efficiency of PSII photochemistry, photochemical quenching coefficient, electron transport rate, and actual PSII efficiency significantly decreased but non-photochemical quenching increased substantially under salt-alkaline mixed stress. Under salt-alkaline mixed stress, sunflower leaves maintained a low Na+- and high K+ status; this may be an important feature of sunflower tolerance to salinity. Analysis of the mechanism of ion balance showed that K+ but not Na+ was the main inorganic cation in sunflower leaves. Our results indicated that the change in organic acid content was opposite to the change of Cl-, and the contribution of organic acid to total charge in sunflower leaves under both stresses decreased with increasing salinity. This may be a special adaptive response to stresses for sunflower. Sunflower under stress conditions mainly accumulated inorganic ions instead of synthesizing organic compounds to decrease cell water potential in order to save energy consumption. and J. Liu, D.-C. Shi.