The article presents an experimental method for the three-dimensional (3D) imaging of ferroelectric domain structures using the method of digital holographic tomography. The implementation of this method uses curvilinear filtered back-projection. Our experimental method is tested by the visualization of the domain structures in the periodically poled lithium niobate single crystal. The developed method enables fast and accurate 3D observation of structures of ferroelectric domains in the whole volume of ferroelectric single crystals. and Článek prezentuje experimentální metodu pro trojrozměrné (3D) zobrazování feroelektrických doménových struktur za použití metody digitální holografické tomografie. Implementace této metody využívá křivočarou filtrovanou zpětnou projekci. Naše experimentální metoda je testována na zobrazování doménových struktur v periodicky polarizovaném monokrystalu niobátu lithia. Vyvinutá metoda umožňuje rychlé a přesné 3D pozorování struktur feroelektrických domén v celém objemu feroelektrických monokrystalů v milimetrovém měřítku.
The aim of this article is mapping and assessing of the mid spatial frequencies occurrence in the CNC optical surfaces machining process, when due to precisely-defined tools path some typical surface structures with significant impact on optical properties are formed or suppressed. and Článek se věnuje mapování a hodnocení výskytu ''mid spatial frequencies'' v procesu CNC opracování optických ploch, kdy vzhledem k přesně definovaným drahám nástrojů dochází ke vzniku nebo naopak k potlačování určitých pro použité procesy charakteristických struktur, jež mají výrazný vliv na optické vlastnosti takto vyráběných optických prvků.
This paper reports on phase retrieval method in non-nulling dual-wavelength interferometry. It uses synthetic phase as shape estimation for determination of fringe orders within every pixel. The fringe order map is subsequently used for unwrapping of phase measured at shorter wavelengths. It was experimentally shown that even for inaccurate synthetic phase, the computed phase for short wavelength is correct. The key point is analysis of phase fields in spatial derivatives where the sensitivity to phase distortions is lower instead of analyzing the phase fields themselves. and Tento příspěvek popisuje metodu získávání a zpracování fáze v interferometrii s dvěma vlnovými délkami. Přístup, nazývaný hierarchická demodulace, využívá syntetickou fázi jako odhad pro stanovení celočíselného násobku 2p v rámci každého pixelu, čímž lze dosáhnout demodulace fázové mapy i v případě podvzorkovaného interferogramu. Standardní procedura hierarchického rozbalení předpokládá nízké zkreslení syntetické fáze, což není v praxi vzhledem k disperzi a dalším vlivům často splněno. Nový přístup popsaný v tomto článku přenáší problém demodulace fáze do prostoru prostorových změn (derivace) fáze, kde je přirozeně vliv zkreslení nižší. Bylo experimentálně ukázáno, že i při nepřesné syntetické fázi je demodulovaná fáze správná.
This paper shows the comparison of a vibration measurement simultaneously performed with three different methods on the same sample. The aim of the paper is to experimentally prove the capability of a newly developed method for the measurement of vibrations with amplitudes in a nanometre range. The newly developed method is based on frequency shifted time averaged digital holographic interferometry combined with phase shifting and the phase averaging principle. The methods used as a bench mark are Doppler vibrometry performed with a commercial single point vibrometer and a single point interferometer in a Michelson construction which is improved with the lock in principle. The results have been compared and very good agreements between the results are shown. and Tento článek prezentuje výsledky měření amplitud vibrací provedených současně třemi různými metodami na stejném vzorku. Cílem tohoto článku je experimentálně prokázat správnost měření nově vyvinuté metody určené pro měření amplitud vibrací s nanometrovou velikostí. Metoda je založena na frekvenčním posunu časově středované digitální holografické interferometrie v kombinaci s principy fázového posuvu a průměrováním. Jako reference slouží komerční jednobodový vibrometr založený na Dopplerově principu a jednobodový Michelsonův interferometr pracující v lock-in režimu. V článku jsou porovnány výsledky měření, které dokládají spolehlivost nově vyvinuté metody.
In the paper the limit of grinded surface micro-roughness of brittle materials (optical glass) is experimentaly determined with regard to the ability to record and reconstruct the surface by digital holography with expected quality. Multiwavelength phase shifted digital holographic interferometry (holographic contouring) is used and its performance is examined in those test. Holographic contouring is great candidate for precise shape measurement technique which could be applied in optical element manufacturing process - mainly during the iterative process of generating. Selected artifact with different radii of the spherical (convex and concave) surface shapes were prepared with different micro roughness and its optical surfaces were recorded holographically in the designed setup. Two different measures were selected to help to estimate the quality of recording. First of them was the intensity profile of the reconstructed surface changing in connection with micro roughness decrease. The shape of the intensity profile develops as the surface is altering from strongly diffusive to almost specular. The second one was the correlation of recorded and reconstructed phases (surfaces shapes) where the recording was done with close wavelengths. The correlation function decreases in connection with the noise amount increase in the data. The preliminary results are displayed showing that the surface could be measured by multiwavelength holographic contouring up to very high quality of lapped surface - almost polished - nearly specular. On the other hand the application of holographic contouring to polished surface measurement is still challenging and remains unresolved even with the multidirection illumination. and Článek se zabývá stanovení dolního limitu mikrodrsnosti, který je významný z pohledu rekonstruovatelnosti povrchu při holografickém měření tvaru povrchu budoucích optických elementů. Limit je určen pro velmi jemně broušené, téměř lesklé povrchy realizované z optického skla. Povrch artefaktů je nasnímán na dvou odlišných, ale blízkých vlnových délkách holograficky a pro zvýšení přesnosti je využita metoda fázového posuvu. Získaná fáze, která může být zobrazena formou kontur, je měřítkem pro odhad limitu mikrodrsnosti. Holografické konturování je velmi perspektivní z pohledu jeho využití právě pro měření tvaru broušených povrchů,zejména během iteračního procesu generování. Byly vybrány artefakty (vzorky pro měření) s různými poloměry kulových (konvexních a konkávních) ploch. Vybrané artefakty byly postupně zpracovávány a byly získány povrchy s různou mikrodrsností v závislosti na použitém volném brusivu. Dva různé ''parametry'' byly vybrány jako míry pro odhad kvality záznamu. Prvníz nich je profil intenzity rekonstruovaného povrchu, ten se mění ve vazbě na vývoj mikrodrsnosti povrchu. Jako druhá míra byla zvolena korelace zaznamenaných a rekonstruovaných fází (sledovaná v celém povrchu), při záznamu provedeném blízkými vlnovými délkami. Korelační koeficient klesá s nárůstem množství šumu v datech. Prvotní výsledky ukazují, že povrch lapovaného elementu může být zaznamenán a rekonstruován v dostatečné kvalitě až do vysokého stupně prolapovanosti, kdy se povrch stává téměř leštěným.
This contribution deals with lab-on-chip technology, which emerged during past years between imaging methods. Diffractive field according to Lorenz-Mie-Debye theory is created by light irradiating the sample positioned near digital sensor. The diffracted wave interferes with the incident wave and creates a digital hologram from which the amplitude and phase fields are subsequently reconstructed. Main advantages of this technology are the simplicity and compactness of the system with low weight and dimension. These properties allow big reduction in price compared to the methods which use optical elements and also the possibility for creating a device useable not only in specialized laboratories but even outside. Furthermore this method achieves submicron resolution in wide field of view. and Tento příspěvek se zabývá technologií lab-on-chip, jež v posledních letech vstupuje na pole zobrazovacích metod. Vzorek umístěný blízko digitálního senzoru, na který dopadá světelná vlna, vytváří difrakční pole podle teorie Lorenz-Mie-Debye. Difraktovaná vlna interferuje s dopadající vlnou a vytváří digitální hologram, z kterého je následně zrekonstruováno amplitudové i fázové pole. Hlavními výhodami lab-on-chip jsou jednoduchost a kompaktnost systému s nízkou hmotností a rozměrem. Tyto vlastnosti umožňují velké snížení ceny v porovnání s metodami využívajícími optické elementy a možnost tvorby skladného zařízení použitelného i mimo specializované laboratoře. Metoda dále dosahuje submikronového laterálního rozlišení v širokém zorném poli.
Plan-parallel optical elements are broadly used as a final component and also as semi-finished product. But the interferometric measurement of its optical properties is very difficult due to interference between the front and rear plan surfaces which cause undesirable fringes often called ''dead fringes''. Because of this fact, multi-step measurement with low coherence source have to be done or immersion fluid for suppressing of unwanted reflections have to be use. This kind of measurement is very laborious and place high demands on the operator. By multiple-wavelength interferometry using tunable laser source, the separation of information about the shape of surfaces or transmission from each other is possible. And also is a possible, evaluation of dead fringes and calculation inner refractive index distribution. All these can be done in only one step measurement with a high coherence laser source and without any immersion fluid. Therefore the measurement is less sensitive to human errors and last but not least very fast. and Planparalelní optické elementy jsou široce užívány a planparalelní disky optického skla jsou také často základem pro následnou výrobu. Interferometrické měření jejich optických vlastností je však velmi obtížné, a to právě díky paralelitě rovinných povrchů, mezi nimiž dochází v kolimovaném koherentním svazku k nežádoucí interferenci znemožňující standardní měření dalších vlastností elementu. Měření je tak nutné provádět vícekrokově pomocí zdrojů s nízkou koherencí, či eliminovat nežádoucí interferenci pomocí imerzní kapaliny. Tyto metody jsou však velmi pracné a kladou vysoké požadavky na operátora. Pomocí multivlnné interferometrie, kdy je lineárně laděna frekvence laserového zdroje, je možné oddělit požadovanou informaci od interference nežádoucí, a tím získat tvarové a transmisní vlastnosti elementu a případně také vnitřní rozložení indexu lomu během jediného měření a bez použití imerzní kapaliny. Výsledné měření je tak v podstatě necitlivé na lidské chyby a především je výrazně rychlejší.
This contribution deals with precise surface topography measurement of functional glass and metallic components. The topography of selected samples was analyzed with interferometric method especially dual-wavelength phase-shifting interferometry. This method excels with its wide field of application achieving high measurement speed, wide field of view and high precision. and Tento příspěvek se zabývá přesným měřením topografie povrchu funkčních skleněných a kovových komponent. Topografie vybraného vzorku byla analyzována metodou dvouvlnné interferometrie, speciálně metodou dvouvlnné interferometrie s řízenou změnou fáze. Metoda měření vyniká aplikačním využitím s vysokou rychlostí měření, širokým zorným polem a vysokou přesností.
This article briefly surveys selected methods for measuring of optical surface shapes, especially aspherical surfaces, their advantages and parameters of devices applicable for this kind of measurement. Aspheres, in view of their great application potential, are currently in the focus of many scientific institutions and companies involved in optical manufacturing. The measurement possibilities of these devices are presented only roughly, their measuring range depends on the details of the specific application. and Článek je stručným přehledem vybraných metod měření tvaru optických ploch, především asférických, které vzhledem k jejich aplikačnímu potenciálu jsou v současné době v centru pozornosti mnoha vědeckých pracovišť a firem zabývajících se optickou výrobou. Článek poslouží všem zájemcům o parametrech speciálních přístrojů a jejich použití pro tento druh měření. Informace o měřicích rozsazích přístrojů je pouze orientační a závisí na konkrétní aplikaci.
When we measure shifts and deformations by digital holography we find a distortion which is caused by different directions of incoming and reflected rays. This paper discusses theoretical description of behaviour and calculations of the sensitivity vector. We propose and experimentally confirm the way to determine the sensitivity vector. and Při měření posunu a deformace pomocí digitální holografické interferometrie narážíme na problém zkreslení, které je způsobeno nestejným rozložením směrů dopadajících a odražených paprsků. V tomto příspěvku je diskutován teoretický popis chování a výpočtu vektoru citlivosti a je také navržen a experimentálně ověřen způsob jeho měření.