a1_Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension – salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of reninangiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the saltsensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake., a2_On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals., J. Zicha, ... [et al.]., and Obsahuje seznam literatury
The agonists of α2-adrenergic receptors such as clonidine, rilmenidine or monoxidine are known to lower blood pressure (BP) through a reduction of brain sympathetic outflow but their chronic antihypertensive effects in rats with low-renin or highrenin forms of experimental hypertension were not studied yet. Moreover, there is no comparison of mechanisms underlying BP reduction elicited by chronic peroral (po) or intracerebroventricular (icv) clonidine treatment. Male salt-sensitive Dahl rats fed a high-salt (4% NaCl) diet and Ren-2 transgenic rats were treated with clonidine administered either in the drinking fluid (0.5 mg/kg/day po) or as the infusion into lateral brain ventricle (0.1 mg/kg/day icv) for 4 weeks. Basal BP and the contributions of renin-angiotensin system (captopril 10 mg/kg iv) or sympathetic nervous system (pentolinium 5 mg/kg iv) to BP maintenance were determined in conscious cannulated rats at the end of the study. Both peroral and intracerebroventricular clonidine treatment lowered BP to the same extent in either rat model. However, in both models chronic clonidine treatment reduced sympathetic BP component only in rats treated intracerebroventricularly but not in perorally treated animals. In contrast, peroral clonidine treatment reduced angiotensin IIdependent vasoconstriction in Ren-2 transgenic rats, whereas it lowered residual blood pressure in Dahl rats. In conclusions, our results indicate different mechanisms of antihypertensive action of clonidine when administered centrally or systemically.
It is generally accepted that angiotensin II plays an important role in high blood pressure (BP) development in both 2-kidney-1- clip (2K1C) Goldblatt hypertension and in partial nephrectomy (NX) model of chronic kidney disease (CKD). The contribution of sympathetic nervous system and nitric oxide to BP control in these models is less clear. Partial nephrectomy or stenosis of the renal artery was performed in adult (10-week-old) male hypertensive heterozygous Ren-2 transgenic rats (TGR) and normotensive control Hannover Sprague Dawley (HanSD) rats and in Wistar rats. One and four weeks after the surgery, basal blood pressure (BP) and acute BP responses to the consecutive blockade of renin-angiotensin (RAS), sympathetic nervous (SNS), and nitric oxide (NO) systems were determined in conscious rats. Both surgical procedures increased plasma urea, a marker of renal damage; the effect being more pronounced following partial nephrectomy in hypertensive TGR than in normotensive HanSD rats with a substantially smaller effect in Wistar rats after renal artery stenosis. We demonstrated that the reninangiotensin system does not play so fundamental role in blood pressure maintenance during hypertension development in either CKD model. By contrast, a more important role is exerted by the sympathetic nervous system, the activity of which is increased in hypertensive TGR-NX in the developmental phase of hypertension, while in HanSD-NX or Wistar-2K1C it is postponed to the established phase. The contribution of the vasoconstrictor systems (RAS and SNS) was increased following hypertension induction. The role of NO-dependent vasodilation was unchanged in 5/6 NX HanSD and in 2K1C Wistar rats, while it gradually decreased in 5/6 NX TGR rats.
Our studies in hypertensive Ren-2 transgenic rats (TGR) demonstrated that chronic administration of atrasentan (ETA receptor antagonist) decreased blood pressure by reduced Ca2+ influx through L-type voltage-dependent calcium channels (L-VDCC) and attenuated angiotensin II-dependent vasoconstriction. We were interested whether bosentan (nonselective ETA/ETB receptor antagonist) would have similar effects. Young 4-week-old (preventive study) and adult 8-weekold (therapeutic study) heterozygous TGR and their normotensive Hannover Sprague-Dawley (HanSD) controls were fed normal-salt (NS, 0.6 % NaCl) or high-salt (HS, 2 % NaCl) diet for 8 weeks. An additional group of TGR fed HS was treated with bosentan (100 mg/kg/day). Bosentan had no effect on BP of TGR fed highsalt diet in both the preventive and therapeutic studies. There was no difference in the contribution of angiotensin II-dependent and sympathetic vasoconstriction in bosentan-treated TGR compared to untreated TGR under the condition of high-salt intake. However, bosentan significantly reduced NO-dependent vasodilation and nifedipine-sensitive BP component in TGR on HS diet. A highly important correlation of nifedipine-induced BP change and the BP after L-NAME administration was demonstrated. Although bosentan did not result in any blood pressure lowering effects, it substantially influenced NO-dependent vasodilation and calcium influx through L-VDCC in the heterozygous TGR fed HS diet. A significant correlation of nifedipine-induced BP change and the BP after L-NAME administration suggests an important role of nitric oxide in the closure of L-type voltage dependent calcium channels.
Blood pressure (BP) level results from the balance of vasoconstrictors (mainly sympathetic nervous system) and vasodilators (predominantly nitric oxide and endothelium-derived hyperpolarizing factor). Most of the forms of experimental hypertension are associated with sympathetic hyperactivity and endothelial dysfunction. It is evident that nitric oxide and norepinephrine are antagonists in the control of calcium influx through L-type voltage-dependent calcium channels (L-VDCC). Their effects on L-VDCC are mediated by cGMP and cAMP, respectively. Nevertheless, it remains to determine whether these cyclic nucleotides have direct effects on L-VDCC or they act through a modulation of calcium-activated K+ and Cl- channels which influence membrane potential. Rats with genetic or salt hypertension are characterized by a relative (but not absolute) NO deficiency compared to the absolute enhancement of sympathetic vasoconstriction. This dysbalance of vasoconstrictor and vasodilator systems in hypertensive animals is reflected by greater calcium influx through L-VDCC susceptible to the inhibition by nifedipine. However, when the modulatory influence of cyclic nucleotides is largely attenuated by simultaneous ganglionic blockade and NO synthase inhibition, BP of spontaneously hypertensive rats remains still elevated compared to normotensive rats due to augmented nifedipine-sensitive BP component. It remains to determine why calcium influx through L-VDCC of hypertensive rats is augmented even in the absence of modulatory influence of major vasoactive systems (sympathetic nervous system, nitric oxide)., M. Pintérová ... [et al.]., and Obsahuje seznam literatury