Chronic intermittent hypoxia (CIH ) is associated with increased production of reactive oxygen species that contributes to the adaptive mechanism underlying the improved myocardial ischemic tolerance. The aim was to find out whether the antioxidative enzyme manganese superoxide dismutase (MnSOD) can play a role in CIH-induced cardioprotection. Adult male Wistar rats were exposed to intermittent hypobaric hypoxia (7000 m, 8 h/day, 25 exposures) (n=14) or kept at normoxia (n=14). Half of the animals from each group received N-acetylcysteine (NAC, 100 mg/kg) daily before the hypoxic exposure. The activity and expression of MnSOD were increased by 66 % and 23 %, respectively, in the mitochondrial fraction of CIH hearts as compared with th e normoxic group; these effects were suppressed by NAC treatment. The negative correlation between MnSOD activity and myoc ardial infarct size suggests that MnSOD can contribute to the improved ischemic tolerance of CIH hearts., P. Balková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Our present focus on the hypoxic immature heart is driven by clinical urgency: cyanotic congenital cardiac malformations remain the single largest cause of mortality from congenital defects and ischemic heart disease is no more the disease of the fifth and older decades but its origin as well as risk factors are present already during early ontogeny. Moreover, the number of adult patients operated for cyanotic congenital heart disease during infancy steadily increases. This group approaches the age of the rising risk of serious cardiovascular diseases, particularly ischemic heart disease. Experimental results have clearly shown that the immature heart is significantly more tolerant to oxygen deficiency than the adult myocardium. However, the mechanisms of this difference have not yet been satisfactorily clarified; they are likely the result of developmental changes in cardiac energy metabolism, including mitochondrial function. The high resistance of the newborn heart cannot be further increased by ischemic preconditioning or adaptation to chronic hypoxia; these protective mechanisms appear only with decreasing tolerance during development. Resistance of the adult myocardium to acute oxygen deprivation may be significantly influenced by perinatal hypoxia. These results suggest that the developmental approach offers new possibilities in the studies of pathogenesis, prevention and therapy of critical cardiovascular diseases., B. Ošťádal ... [et al.]., and Obsahuje seznam literatury
Recent studies demonstrated remote effects of renal ischemia/reperfusion (I/R) injury on some organs such as brain, liver, and lungs. We investigated the effects of renal I-R injury on function, histology and oxidative stress state of pancreas. Twenty -four male adult Sprague-Dawley rats were divided equally into 2 groups; sham group: rats underwent midline laparotomy and dissection of renal pedicles without renal ischemia, and ischemic group: rats underwent bilateral renal ischemia for 45 min. Renal functions (serum creatinine and BUN), pancreatic functions (serum amylase, lipase and insulin) and fasting blood glucose were measured at 2 h, 1 day, 3 days and 7 days after ischemia. Also, pancreatic histology and malondialdehyde (MDA), catalase and reduced glutathione (GSH) were examined at 2 h and 7 days after ischemia. The ischemic rats showed significant increase in serum creatinine and BUN with significant increase in serum amylase and lipase at 2 h, 1 day and 3 days after ischemia. Blood glucose and fasting insulin showed no significant change apart from significant increase in insulin in sham group at 1 day after ischemia. Pancreas isolated from ischemic rats showed significant increase in histopathological damage score and significant increase in MDA and catalase enzyme with decrease in GSH. In conclusion, bilateral renal ischemia for 45 min caused significant impairment of pancreatic functions and histology. This might be due to deficiency of antioxidant and increased lipid peroxidations in pancreatic tissues., A. M. Hussein ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The pathological potential of glial cells was recognized already by Rudolf Virchow, Santiago Ramon y Cajal and Pio Del Rio-Ortega. Many functions and roles performed by astroglia in the healthy brain determine their involvement in brain diseases; as indeed any kind of brain in sult does affect astrocytes, and their performance in pathological conditions, to a very large extent, determines the survival of the brain parenchyma, the degree of damage and neurological defect. Astrocytes being in general responsible for overall brain homeostasis are involved in virtually every form of brain pathology. Here we provide an overview of recent developments in identifying the role and mechanisms of the pathological potential of astroglia., A. Chvátal, M. Anděrová, H. Neprašová, I. Prajerová, L. Benešová, O. Butenko, A. Verkhratsky., and Obsahuje bibliografii a bibliografické odkazy
Microparticles are small fragments of the plasma membrane released by activated and/or apoptotic cells. In theory, all type of cells can shed microparticles representing a physiological process in the cell life. Mainly, microparticles generation has been studied in different cardiovascular pathologies due to the facility to obtain blood samples from individuals. Although microparticles have been considered as simply markers of several diseases, in the last decade, several studies support the hypothesis that they participate in the regulation of the cardiovascular system function by carrying biological messages between cells. Among the effects of microparticles, recent data show that they can be implicated in the modulation of neovascularization, an essential function of cells from cardiovascular system during either ischemic diseases or cancer development. Whereas during pathologies associated with ischemia an increase of neovascularization may have beneficial effects, anti-angiogenic strategies represent new approaches for manipulation of tumor development. Here, we give an overview of the mechanisms and factors involved in neovascularization, and finally, we look at the role and the consequences of the modulation of this process by microparticles in pathological situations., H. A. Mostefai, R. Andriantsitohaina, M. C. Martínez., and Obsahuje bibliografii a bibliografické odkazy
In order to reduce tissue damage caused by ischemia-reperfusion injury, this study aims to investigate the protective effect and mechanism of α-lipoic acid on hepatic ischemia-reperfusion injury in rats. The bloodstream of rats was blocked in the left middle and left lateral liver lobes of the liver. Forty rats were randomly divided into two groups: treatment group and injury group. Rats were injected with either 25 mg/1 ml of α-lipoic acid (treatment group) or 1 ml of saline (injury group) into the caudal vein 15 min before hepatic ischemia-reperfusion. Rat serum alanine aminotransferase (GPT), glutathione (GSH) and superoxide dismutase (SOD) levels were examined at various time points (1, 3, 6 and 12 h) in both groups. Changes in nuclear factor kappa B P65 (NF-κB P65) expression in ischemia-reperfusion liver at various time points after reperfusion (1, 3, 6 and 12 h) were evaluated through immunohistochemistry assay. Changes in macrophage inflammatory protein-2 (MIP-2) mRNA and inducible nitric oxide synthase (iNOS) mRNA expression in ischemic reperfused rat livers were detected by RT-PCR. Serum GPT level was significantly higher in the injury group than in the treatment group (P<0.01). NF-κB P65, MIP-2 mRNA and iNOS mRNA expression in ischemic reperfused rat livers were significantly higher in the injury group than in the treatment group (P<0.01). Serum GSH and SOD levels were higher in the treatment group than in the injury group (P<0.01). Alpha-lipoic acid significantly reduced ischemia-reperfusion injury in rat livers. This may be associated to the direct scavenging of oxygen-free radicals, increased GSH production, and the activation of downstream media due to decreased NF-κB and GSH consumption.
This study was designed to determine the gastroprotective properties of quercetin in ischemia/reperfusion-induced gastric mucosal injury and the involvement of endogenous prostaglandins in this process. Oral pretreatment of rats with quercetin (100 mg.kg-1) 30 min before surgery significantly decreased the length of gastric mucosal lesions. However, lower doses of quercetin (25 and 50 mg.kg-1) only slightly decreased the gastric mucosal injury. Intraperitoneal application of indomethacin (5 mg.kg-1) had no effect in control (sham-operated) animals, but significantly worsened gastric injury in non-treated animals after ischemia/reperfusion. Furthermore, indomethacin only slightly reversed protective effect of quercetin. Non-treated animals showed a marked decrease in adherent mucus after ischemia/reperfusion. On the other hand, application of quercetin prevented this significant decrease even in animals pretreated with indomethacin. It can be concluded that antioxidant properties of quercetin and its mucus protective effect might be the main factors responsible for its protective effect against ischemia/reperfusion-induced gastric mucosal injury., J. Mojžiš, K. Hviščová, D. Germanová, D. Bukovičová, L. Mirossay., and Obsahuje bibliografii
Remifentanil is a commonly used opioid in anesthesia with cardioprotective effect in ischemia-reperfused (I/R) heart. We evaluated the influence of remifentanil on myocardial infarct size and expressions of proteins involved in apoptosis in I/R rat heart following various time protocols of remifentanil administration. Artificially ventilated anesthetized Sprague-Dawley rats were subjected to a 30 min of left anterior descending coronary artery occlusion followed by 2 h of reperfusion. Rats were randomly assigned to one of five groups; Sham, I/R only, remifentanil preconditioning, postconditioning and continuous infusion group. Myocardial infarct size, the phosphorylation of ERK1/2, Bcl2, Bax and cytochrome c and the expression of genes influencing Ca2+ homeostasis were assessed. In remifentanil-administered rat hearts, regardless of the timing and duration of administration, infarct size was consistently reduced compared to I/R only rats. Remifentanil improved expression of ERK 1/2 and anti-apoptotic protein Bcl2, and expression of sarcoplasmic reticulum genes which were significantly reduced in the I/R rats only. Remifentanil reduced expression of pro-apoptotic protein, Bax and cytochrome c. These suggested that remifentanil produced cardioprotective effect by preserving the expression of proteins involved in anti-apoptotic pathways, and the expression of sarcoplasmic reticulum genes in I/R rat heart, regardless of the timing of administration., H. S. Kim ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Remote ischemic preconditioning (RIP)-induced protection of myocardial energetics was well documented on the level of tissue, but data concerning the involvement of mitochondria were missing. We aimed at the identification of changes in membrane properties and respiratory functions induced in rat heart mitochondria by RIP. Experiments were performed on 46 male Wistar rats divided into control and RIP-treated groups of 21 animals each. Blood flow in the occluded area was recorded by MRI angiography in four animals. RIP protocol comprised of three successive 5-min occlusions each followed by 5-min reperfusions of descending branches of the right hind limb femoral artery. The efficacy of RIP was evaluated as the extent of RIP-induced protection against damage to the functions of mitochondria isolated by differential centrifugation after 30-min global ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Assessments: mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ9 and CoQ10 with HPLC, mitochondrial respiration with the Oxygraph-2k (Oroboros). Results revealed that RIP was affecting the mitochondria. The immediate protection conferred by RIP involves beneficial and prognostically significant effects: a total elimination of ischemia/reperfusion-induced depression of mitochondrial membrane fluidity and a trend for better preservation of mitochondrial state 3 respiration., M. Ferko, I. Kancirová, M. Jašová, S. Čarnická, M. Muráriková, I. Waczulíková, Z. Sumbalová, J. Kucharská, O. uličná, T. Ravingerová, A. Ziegelhöffer., and Obsahuje bibliografii
Remote ischemic preconditioning (RIPC) is a novel strategy of protection against ischemia-reperfusion (IR) injury in the heart (and/or other organs) by brief episodes of non-lethal IR in a distant organ/tissue. Importantly, RIPC can be induced noninvasively by limitation of blood flow in the extremity implying the applicability of this method in clinical situations. RIPC (and its delayed phase) is a form of relatively short-term adaptation to ischemia, similar to ischemic PC, and likely they both share triggering mechanisms, whereas mediators and end-effectors may differ. It is hypothesized that communication between the signals triggered in the remote organs and protection in the target organ may be mediated through substances released from the preconditioned organ and transported via the circulation (humoral pathways), by neural pathways and/or via systemic anti-inflammatory and antiapoptotic response to short ischemic bouts. Identification of molecules involved in RIPC cascades may have therapeutic and diagnostic implications in the management of myocardial ischemia. Elucidation of the mechanisms of endogenous cardioprotection triggered in the remote organ could lead to the development of diverse pharmacological RIPC mimetics. In the present article, the authors provide a short overview of RIPC-induced protection, proposed underlying mechanisms and factors modulating RIPC as a promising cardioprotective strategy., T. Ravingerova, V. Farkasova, L. Griecsova, S. Carnicka, M. Murarikova, E. Barlaka, F. Kolar, M. Bartekova, L. Lonek, J. Slezak, A. Lazou., and Obsahuje bibliografii