A 2×2 factorial design was used to evaluate possible preservation
of mitochondrial functions in two cardioprotective experimental models, remote ischemic preconditioning and streptozotocin-induced diabetes mellitus, and their interaction during ischemia/reperfusion injury (I/R) of the heart. Male Wistar rats were randomly allocated into four groups: control (C), streptozotocin-induced diabetic (DM), preconditioned
(RPC) and preconditioned streptozotocin-induced diabetic (DM+RPC).
RPC was conducted by 3 cycles of 5-min hind-limb ischemia and 5-min reperfusion. DM was induced by a single dose of 65mg/kg streptozotocin. Isolated hearts were exposed to ischemia/reperfusion test according to Langendorff. Thereafter mitochondria were isolated and the mitochondrial respiration was measured. Additionally, the ATP synthase activity measurements on the same preparations were done. Animals of all groups subjected to I/Rexhibited a decreased state 3 respiration with the least change noted in DM+RPC group associated with no significant changes in state 2 respiration. In RPC, DM and DM+RPC group, no significant
changes in the activity of ATP synthase were observed after I/R
injury. These results suggest that the endogenous protective mechanisms of RPC and DM do preserve the mitochondrial function in heart when they act in combination.
Remote ischemic preconditioning (RIP)-induced protection of myocardial energetics was well documented on the level of tissue, but data concerning the involvement of mitochondria were missing. We aimed at the identification of changes in membrane properties and respiratory functions induced in rat heart mitochondria by RIP. Experiments were performed on 46 male Wistar rats divided into control and RIP-treated groups of 21 animals each. Blood flow in the occluded area was recorded by MRI angiography in four animals. RIP protocol comprised of three successive 5-min occlusions each followed by 5-min reperfusions of descending branches of the right hind limb femoral artery. The efficacy of RIP was evaluated as the extent of RIP-induced protection against damage to the functions of mitochondria isolated by differential centrifugation after 30-min global ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Assessments: mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ9 and CoQ10 with HPLC, mitochondrial respiration with the Oxygraph-2k (Oroboros). Results revealed that RIP was affecting the mitochondria. The immediate protection conferred by RIP involves beneficial and prognostically significant effects: a total elimination of ischemia/reperfusion-induced depression of mitochondrial membrane fluidity and a trend for better preservation of mitochondrial state 3 respiration., M. Ferko, I. Kancirová, M. Jašová, S. Čarnická, M. Muráriková, I. Waczulíková, Z. Sumbalová, J. Kucharská, O. uličná, T. Ravingerová, A. Ziegelhöffer., and Obsahuje bibliografii