Perinatal hypoxemia may have serious long-term effects on the adult cardiovascular system and may lead to sex-dependent changes in cardiac tolerance to acute ischemia in adult life. The aim of the study was to answer the question whether gonadectomy of the male and female rats in the early phase of ontogenetic development affects the late effect of perinatal hypoxia. Pregnant Wistar rats were placed into a normobaric hypoxic chamber (12 % O2) 7 days before the expected date of delivery. Newborn pups were kept in the chamber with their mothers for another 5 days after birth. After hypoxic exposure all animals were kept for 3 months in room air. Some of the pups were gonadectomized right after removal from the hypoxic chamber. Ventricular arrhythmias were assessed on isolated perfused hearts. Castration did not influence arrhythmogenesis in the adult normoxic or perinatally hypoxic female hearts. Nevertheless, the number of arrhythmias was decreased in perinatally hypoxic gonadectomized males. In conclusion, we have shown that perinatal normobaric hypoxia increased cardiac tolerance to acute ischemia in adult male rats; however, it had no late effect in females. Gonadectomy did not affect arrhythmogenesis in both normoxic and hypoxic female hearts, whereas in males significantly decreased the number of arrhythmias., I. Netuka ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
In order to reduce tissue damage caused by ischemia-reperfusion injury, this study aims to investigate the protective effect and mechanism of α-lipoic acid on hepatic ischemia-reperfusion injury in rats. The bloodstream of rats was blocked in the left middle and left lateral liver lobes of the liver. Forty rats were randomly divided into two groups: treatment group and injury group. Rats were injected with either 25 mg/1 ml of α-lipoic acid (treatment group) or 1 ml of saline (injury group) into the caudal vein 15 min before hepatic ischemia-reperfusion. Rat serum alanine aminotransferase (GPT), glutathione (GSH) and superoxide dismutase (SOD) levels were examined at various time points (1, 3, 6 and 12 h) in both groups. Changes in nuclear factor kappa B P65 (NF-κB P65) expression in ischemia-reperfusion liver at various time points after reperfusion (1, 3, 6 and 12 h) were evaluated through immunohistochemistry assay. Changes in macrophage inflammatory protein-2 (MIP-2) mRNA and inducible nitric oxide synthase (iNOS) mRNA expression in ischemic reperfused rat livers were detected by RT-PCR. Serum GPT level was significantly higher in the injury group than in the treatment group (P<0.01). NF-κB P65, MIP-2 mRNA and iNOS mRNA expression in ischemic reperfused rat livers were significantly higher in the injury group than in the treatment group (P<0.01). Serum GSH and SOD levels were higher in the treatment group than in the injury group (P<0.01). Alpha-lipoic acid significantly reduced ischemia-reperfusion injury in rat livers. This may be associated to the direct scavenging of oxygen-free radicals, increased GSH production, and the activation of downstream media due to decreased NF-κB and GSH consumption.
Remifentanil is a commonly used opioid in anesthesia with cardioprotective effect in ischemia-reperfused (I/R) heart. We evaluated the influence of remifentanil on myocardial infarct size and expressions of proteins involved in apoptosis in I/R rat heart following various time protocols of remifentanil administration. Artificially ventilated anesthetized Sprague-Dawley rats were subjected to a 30 min of left anterior descending coronary artery occlusion followed by 2 h of reperfusion. Rats were randomly assigned to one of five groups; Sham, I/R only, remifentanil preconditioning, postconditioning and continuous infusion group. Myocardial infarct size, the phosphorylation of ERK1/2, Bcl2, Bax and cytochrome c and the expression of genes influencing Ca2+ homeostasis were assessed. In remifentanil-administered rat hearts, regardless of the timing and duration of administration, infarct size was consistently reduced compared to I/R only rats. Remifentanil improved expression of ERK 1/2 and anti-apoptotic protein Bcl2, and expression of sarcoplasmic reticulum genes which were significantly reduced in the I/R rats only. Remifentanil reduced expression of pro-apoptotic protein, Bax and cytochrome c. These suggested that remifentanil produced cardioprotective effect by preserving the expression of proteins involved in anti-apoptotic pathways, and the expression of sarcoplasmic reticulum genes in I/R rat heart, regardless of the timing of administration., H. S. Kim ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Remote ischemic preconditioning (RIP)-induced protection of myocardial energetics was well documented on the level of tissue, but data concerning the involvement of mitochondria were missing. We aimed at the identification of changes in membrane properties and respiratory functions induced in rat heart mitochondria by RIP. Experiments were performed on 46 male Wistar rats divided into control and RIP-treated groups of 21 animals each. Blood flow in the occluded area was recorded by MRI angiography in four animals. RIP protocol comprised of three successive 5-min occlusions each followed by 5-min reperfusions of descending branches of the right hind limb femoral artery. The efficacy of RIP was evaluated as the extent of RIP-induced protection against damage to the functions of mitochondria isolated by differential centrifugation after 30-min global ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Assessments: mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ9 and CoQ10 with HPLC, mitochondrial respiration with the Oxygraph-2k (Oroboros). Results revealed that RIP was affecting the mitochondria. The immediate protection conferred by RIP involves beneficial and prognostically significant effects: a total elimination of ischemia/reperfusion-induced depression of mitochondrial membrane fluidity and a trend for better preservation of mitochondrial state 3 respiration., M. Ferko, I. Kancirová, M. Jašová, S. Čarnická, M. Muráriková, I. Waczulíková, Z. Sumbalová, J. Kucharská, O. uličná, T. Ravingerová, A. Ziegelhöffer., and Obsahuje bibliografii
Factors modulating cardiac susceptibility to ischemia-reperfusion (I/R) are permannetly attracting the attention of experimental cardiology research. We investigated, whether continuous 24 h/day light exposure of rats can modify cardiac response to I/R, NO-synthase (NOS) activity and the level of oxidative load represented by conjugated dienes (CD) concentration. Two groups of male adult Wistar rats were studied: controls exposed to normal light/dark cycle (12 h/day light, 12 h/day dark) and rats exposed to continuous light for 4 weeks. Perfused isolated hearts (Langendorff technique) were exposed to 25 min global ischemia and subsequent 30 min reperfusion. The recovery of functional parameters (coronary flow, left ventricular developed pressure, contractility and relaxation index) during reperfusion as well as the incidence, severity and duration of arrhythmias during first 10 min of reperfusion were determined. The hearts from rats exposed to continuous light showed more rapid recovery of functional parameters but higher incidence, duration and severity of reperfusion arrhythmias compared to controls. In the left ventricle, the NOS activity was attenuated, but the CD concentration was not significantly changed. We conclude that the exposure of rats to continuous light modified cardiac response to I/R. This effect could be at least partially mediated by attenuated NO production., R. Važan, P. Janega, S. Hojná, J. Zicha, F. Šimko, O. Pecháňová, J. Styk, L'. Paulis., and Obsahuje bibliografii
Reperfusion therapies for ischaemic stroke can induce secondary injury accompanied by neuronal death. The Y-box binding protein 1 (YBX1), an oncoprotein, is critical for regulating tumour cell proliferation and apoptosis. Thus, we wanted to know whether YBX1 could regulate neuronal cell apoptosis caused by cerebral ischaemia/reperfusion (I/R). We established a model of cerebral I/R-induced injury in vitro by oxygen-glucose deprivation/reoxygenation (OGD/R) treatment and determined YBX1 expression using Western blot. Next, the effect of YBX1 on the apoptosis and viability of OGD/R-treated PC12 cells was evaluated by flow cytometry, MTT assay, and Western blot. Besides, the release of lactate dehydrogenase (LDH) and the activity of catalase (CAT) and superoxide dismutase (SOD) were detected to evaluate oxidative stress of PC12 cells induced by OGD/R. The regulatory roles of YBX1 in the AKT/GSK3β pathway were examined by Western blot. As a result, OGD/R treatment down-regulated YBX1 expression in PC12 cells. YBX1 over-expression attenuated the growth inhibition and apoptosis of PC12 cells induced by OGD/R. Besides, the increase of LDH release and the decrease of SOD and CAT activities caused by OGD/R were reversed by YBX1 over-expression. Moreover, YBX1 over-expression could activate the AKT/GSK3β pathway in OGD/ R-treated PC12 cells. Therefore, YBX1 could protect against OGD/R-induced injury in PC12 cells through activating the AKT/GSK3β signalling pathway, and thus YBX1 has the potential to become a therapeutic target for cerebral I/R-induced injury.