We compared delayed fluorescence (DF) excitation spectrometry with radiocarbon (14C) technique using a monoalgal culture of Chlorella vulgaris grown under natural temperature and irradiance. This was done by monitoring the DF, in parallel to quantum efficiency (QE) and index of radiant energy utilization efficiency (Ψ) as calculated on the basis of carbon uptake measurements by radiocarbon technique. During the diurnal cycle, temperature, irradiance, and chlorophyll (Chl) contents were monitored in the algal culture that was kept in an open transparent plastic tank submerged at the surface of Lake Kinneret, Israel. The DF signal correlated with both the QE (r 2 = 0.869, p<0.01) and Ψ (r 2 = 0.977, p<0.01) during a diurnal cycle. We suggest that, besides the measurement of active Chl and phytoplankton population composition, the DF signal provides additional information on the QE and Ψ in phytoplankton population. and E. Kurzbaum, W. Eckert, Y. Z. Yacobi.
Plants of pepper (Capsicum amuum L.) were grown in controlled environment chambers at ambient (360 pmol mol"*) and fluctuating pulse-enriched CO2 concentrations (700 pmol mol"* daily average, ranging from 500 to 3500 pmol mol"* = ECO2) under two water regimes. A decrease in plant growth and yield together with frequent visual injuries was found in plants growing under ECO2. Root/shoot ratio was greater, chlorophyll concentration and respiration rates were lower, and stomatal conductance and relative importance of alternativě pathway respiration were higher under ECO2. The negative effects of ECO2 were more intense under high water availability. The symptoms produced by ECO2 were similar to those of resource limitation, and were alleviated with increased nutrient supply. Constant elevated CO2 concentrations (700 pmol mol"*) increased pepper production and did not produce any of the injuries described for this erratic ECO2 treatment. Thus, it is probably the erratic nátuře of the CO2 concentration and not the gas itself that was causing the injiuy.
Elevated temperature inhibited the accumulation of chlorophyll and photosynthetic proteins, and the development of photochemical activity, however, carotenoids continued to accumulate. Signal transduction pathway involved in protochlorophyllide oxidoreductase was unaffected by elevated temperature of 38°C. Two-dimensional gel electrophoresis of stroma proteins showed similar patterns in the dark-grown seedlings and seedlings irradiated at elevated temperature, although some low molecular mass proteins accumulated at 38°C. In contrast, seedlings irradiated at 25°C showed complex pattern of proteins. Hence the development of chloroplast and its associated functions during irradiation of etiolated seedlings are inhibited by elevated temperature. and A. K. Singh, G. S. Singhal.
Chrysanthemum plantlets were cultivated in vitro on media with 2.0, 0.3, or 0 % sucrose, or photoautotrophically without an organic carbon source but with supplementation of the culture vessel atmosphere with 2 % CO2. The photoautotrophically cultivated plantlets showed a better growth and multiplication, higher contents of chlorophyll (Chl) and carotenoids, higher Chl a/b ratio, net photosynthetic rate and ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase activities than plantlets grown on the medium with sucrose. and C. Cristea, F. Dalla Vecchia, N. la Rocca.
Alterations in photosynthetic capacity of primary leaves of wheat seedlings in response to ultraviolet-B (UV-B; 280-320 nm; 60 µmol m-2 s-1) exposure alone and in combination with photosynthetically active radiation (PAR; 400-800 nm; 200 µmol m-2 s-1) during different phases of leaf growth and development were assessed. UV-B exposure resulted in a phase-dependent differential loss in photosynthetic pigments, photochemical potential, photosystem 2 (PS2) quantum yield, and in vivo O2 evolution. UV-B exposure induced maximum damage to the photosynthetic apparatus during senescence phase of development. The damages were partially alleviated when UV-B exposure was accompanied by PAR. UV-B induced an enhancement in accumulation of flavonoids during all phases of development while it caused a decline in anthocyanin content during senescence. The differential changes in these parameters demonstrated the adaptation ability of leaves to UV-B stress during all phases of development and the ability was modified in UV-B+ PAR exposed samples. and M. K. Pradhan ... [et al.].
Orcuttieae is a small tribe of C4 grasses endemic to seasonal pools in the southwestern U.S., comprising the basal genus Neostapfia, Tuctoria, and the most derived group, Orcuttia. Growth is initiated underwater, and when pools dry, species undergo a metamorphosis replacing aquatic foliage with terrestrial foliage. O. californica and O. viscida exhibit CAM-like diel fluctuations in acidity in the aquatic foliage. Pulse-chase studies showed that although CO2 was fixed into malic acid in the dark, an overnight chase in the dark revealed that most label was not retained in organic acids, indicating a role other than CAM. Terrestrial foliage exhibited a very different diel fluctuation; acids accumulated during the day, and diminished overnight. Malic acid predominated and was secreted on the surface of the leaf in a manner similar to another arid land species. This terrestrial daytime acid accumulation may not be related to photosynthetic pathway but may play an anti-herbivore function. No acid fluctuations were observed in either N. colusana or T. greenei.
In crowns of chestnut trees the absorption of radiant energy is not homogeneous; leaves from the south (S) side are the most irradiated, but leaves from the east (E) and west (W) sides receive around 70 % and those from north (N) face less than 20 % of the S irradiation. Compared to the S leaves, those from the N side were 10 % smaller, their stomata density was 14 % smaller, and their laminae were 21 % thinner. N leaves had 0.63 g(Chl) m-2, corresponding to 93 % of total chlorophyll (Chl) amount in leaves of S side. The ratios of Chl a/b were 2.9 and 3.1 and of Chl/carotenoids (Car) 5.2 and 4.8, respectively, in N and S leaves. Net photosynthetic rate (PN) was 3.9 µmol(CO2) m-2 s-1 in S leaves, in the E, W, and N leaves 81, 77, and 38 % of that value, respectively. Morning time (10:00 h) was the period of highest PN in the whole crown, followed by 13:00 h (85 % of S) and 16:00 h with 59 %. Below 500 µmol m-2 s-1 of photosynthetic photon flux density (PPFD), N leaves produced the highest PN, while at higher PPFD, the S leaves were most active. In addition, the fruits from S side were 10 % larger than those from the N side. and J. Gomes-Laranjo ... [et al.].
The reduction in chlorophyll (Chl) and protein contents and the increase in amino acid content in leaf discs in response to aqueous SO2 exposure under continuous irradiance were more expressed in Amaranthus paniculatus (C4 plant) than in Cajanus cajan (C3 plant). The content of SH-compounds increased more in pigeonpea than in amaranth leaf discs in response to SO2. Aqueous SO2 exposure also reduced the CO2 fixation and ribulose-l,5-bisphosphate carboxylase (RuBPC) and phosphoenolpyruvate carboxylase (PEPC) activities in leaf discs of both plant species. The differences in sensitivity of these plants to SO2 were related to their conversion efficiency of SO2 to less toxic substances and sulphydryl compounds.
Diurnal and seasonal changes in photosynthetic characteristics, leaf area dry mass (ADM), and reducing sugar and total chlorophyll (Chl) contents of leaves of Frantoio, Leccino, and Maurino olive cultivars were investigated in Central Italy. Leaf net photosynthetic rate (PN) per unit leaf area changed during the growing season and during the day, but the cultivar did not significantly influence the changes. In both young and one-year-old leaves the highest PN values were observed in October, while the lowest values were recorded in August and December; during the day the highest PN values were generally found in the morning. The pattern of photosynthetic response to photosynthetic photon flux density (PPFD) of leaves was similar in the three genotypes. Sub-stomatal CO2 concentration (CI) tended to increase when PN decreased. The increase in CI was accompanied by a stomatal conductance to water vapor (gS) decrease. In general, PN and dark respiration rate (RD) were correlated. Transpiration rate (E), with no differences between the cultivars, increased from April to July, decreased greatly in August, then increased in October and finally decreased again in December. Leaf water content increased from April to June, remained high until mid July, decreased significantly in August, remaining constant until December with no differences associated with the cultivar. In both young and one-year-old leaves, the leaf water content per unit leaf area was slightly greater in Frantoio than in the other two cultivars. The one-year-old leaves had a higher Chl content than the young ones. The cultivar did not substantially influence the leaf reducing sugar content which decreased from April to August, when it reached the lowest level, then increased rapidly until October. During the day the reducing sugar content did not change significantly. The leaf ADM was slightly higher in Frantoio than in the other cultivars and one-year-old leaves had higher values than the young ones. Leaf ADM decreased from April to June and then tended to increase until December. During the day there were no substantial variations. and P. Proietti, F. Famiani.
Membrane-bound bicarbonate is believed by some to act as an essential activator of photosystem 2 (PS2) electron transport. Formáte and other inhibitory monovalent anions act by removing bound-bicarbonate. This belief relies to a great extent on the observation that formáte (100 mM) pretreated thylakoids exhibit a non- proportionality between Hill activity (HAR) and chlorophyll (Chl) concentration when preirradiated with bright radiation in reaction mixture that contains only 5 mM formáte. The non-linearity was attributed to a supposed loosening of residual bicarbonate still present after formáte treatment and which would be more abundant at higher Chl concentrations. In repeating this experiment, we observed an increase in HAR at higher Chl concentrations in preirradiated, but also in non-preirradiated samples, the latter were simply left in the dark for 3 min before measurements were made. Therefore, preirradiation is not needed to restore some HAR in formáte pretreated samples; a 3 min wait in the electrode chamber at low formáte concentration is sufficient to partially relieve the formáte inhibition of PS2 activity. Moreover, HAR in samples preirradiated by weak radiation, or not preirradiated at all, was directly proportional to Chl concentration. We can attribute the increase in activity to a dissociation of bound formáte, not necessarily to the effect of residual bicarbonate. Non-linearity in HAR with Chl concentration was found only in high- irradiance pretreated samples. We can attribute this to a greater amount of photoinhibition occurring in the dilute samples, where the effective irradiance was greater. There is no need to postuláte the existence of residual bound bicarbonate to explain these results.