Chrysanthemum plantlets were cultivated in vitro on media with 2.0, 0.3, or 0 % sucrose, or photoautotrophically without an organic carbon source but with supplementation of the culture vessel atmosphere with 2 % CO2. The photoautotrophically cultivated plantlets showed a better growth and multiplication, higher contents of chlorophyll (Chl) and carotenoids, higher Chl a/b ratio, net photosynthetic rate and ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase activities than plantlets grown on the medium with sucrose. and C. Cristea, F. Dalla Vecchia, N. la Rocca.
In the xantha1 (xan1) mutant of sunflower (Helianthus annuus L.), the effects on organ anatomy and seedling growth did correlate to the alteration of chloroplast biogenesis. The xan1 seedlings grown under 165 µmol(photon) m-2 s-1 revealed a severely altered chloroplast ultrastructure in cotyledons and leaves. Cross-sections or clarified tissues of the xan1 cotyledons did not show evident alterations with respect to normal cotyledons suggesting that the impairment of chloroplast biogenesis has negligible consequences on embryonic leaves. By contrast, the analysis of xan1 leaves showed that the defects in chloroplast biogenesis were correlated to a drastic reduction of organ size and to a clear enhancement of the trichome growth. The differentiation of palisade and spongy parenchyma in cotyledons and leaves of the xan1 mutant was normal but both organs displayed a drastic reduction in the plastid number with respect to wild type. In addition, xan1 hypocotyls showed a reduced development of the main vascular bundles in comparison with normal seedlings and an undersized central cylinder of the primary root. The exogenous supply of sucrose was not sufficient to revert in vitro the deficit of xan1 growth and the constraints in morphogenetic processes. and M. Fambrini ... [et al.].
Chlorophyll content, photosynthetíc oxygen evolution and the activities of ATP- sulphurylase (ATP-s) (E.C. 2.7,7.4.), OAS-sulphydrylase (OAS-s) (E.C, 4.2.99.8.), nitráte reductase (NR) (E.C. 1.6.6.1.) and glutamine synthetase (GS) (E.C. 6.3.1.2), were determined in leaves of Zea mays L. Dekalb cv. Sponsor plants grown in the presence of 0, 10, 100, 250 pM Cd in order to evaluate the effect of this metal on sulphate and nitráte assimilation pathway. Cd induced a slight decrease of photosynthetíc oxygen evolution (-21 % of the control at 250 pM), whereas the enzyme activities were differently influenced: OAS-s and GS increased up to 40 and 25 % of the control, respectively, at 250 pM Cd; NR showed a 20 % stimulation at 100 pM Cd, and ATP-s was slightly inhibited. The results stress the importance of experimental conditions adopted on the response of enzyme activities to Cd and suggest that the observed increases of enzyme activities are related to a defence mechanism.