Diurnal and seasonal changes in photosynthetic characteristics, leaf area dry mass (ADM), and reducing sugar and total chlorophyll (Chl) contents of leaves of Frantoio, Leccino, and Maurino olive cultivars were investigated in Central Italy. Leaf net photosynthetic rate (PN) per unit leaf area changed during the growing season and during the day, but the cultivar did not significantly influence the changes. In both young and one-year-old leaves the highest PN values were observed in October, while the lowest values were recorded in August and December; during the day the highest PN values were generally found in the morning. The pattern of photosynthetic response to photosynthetic photon flux density (PPFD) of leaves was similar in the three genotypes. Sub-stomatal CO2 concentration (CI) tended to increase when PN decreased. The increase in CI was accompanied by a stomatal conductance to water vapor (gS) decrease. In general, PN and dark respiration rate (RD) were correlated. Transpiration rate (E), with no differences between the cultivars, increased from April to July, decreased greatly in August, then increased in October and finally decreased again in December. Leaf water content increased from April to June, remained high until mid July, decreased significantly in August, remaining constant until December with no differences associated with the cultivar. In both young and one-year-old leaves, the leaf water content per unit leaf area was slightly greater in Frantoio than in the other two cultivars. The one-year-old leaves had a higher Chl content than the young ones. The cultivar did not substantially influence the leaf reducing sugar content which decreased from April to August, when it reached the lowest level, then increased rapidly until October. During the day the reducing sugar content did not change significantly. The leaf ADM was slightly higher in Frantoio than in the other cultivars and one-year-old leaves had higher values than the young ones. Leaf ADM decreased from April to June and then tended to increase until December. During the day there were no substantial variations. and P. Proietti, F. Famiani.
Dry matter (DM) of olive fruit (cv. Leccino) constantly increased from fruit-set (mid-June) to the end of October. The oil content increased rapidly from the beginning of August, about 40-50 d after full bloom (AFB), to the end of October. As the oil content increased, the saccharide content decreased. On a DM basis, fruit dark respiration rate (RD) and stomatal conductance (Gs) were high soon after fruit-set, then strongly decreased. Gross photosynthetic rate (PG) in full sunlight was high in the first 3 weeks after fruit-set, when the chlorophyll (Chl) content and the ratio between fruit surface area and volume were high, then it progressively decreased. The fruit intercellular CO2 concentration (Ci) was always relatively high, particularly from September onwards. The PG increased following the increase of irradiance (I). The daily PG trend was similar to the I and temperature trends, showing the maximum values at 14:00 h. For a large part of the fruit growing period, during daylight, the CO2 intake by a fruit permitted the reassimilation of a large part (40-80%) of the CO2 produced by RD. The stomata in the first stages of fruit growth were oval and surrounded by guard cells, two months later they lost their shape and were covered by wax. The reduction in fruit PG during fruit growth could be connected to the reduction of the ratio between fruit surface area and fruit volume and the cellular differentiation, whereas the constant high Ci seems to exclude the influence of Gs decrease. Even if olive fruit is highly heterotrophic organ, its photosynthesis can considerably reduce the use of assimilates for respiration and favour fruit maintenance and growth. and P. Proietti, F. Famiani, A. Tombesi.
The study was carried out in a four-year-old super-high density olive grove in Central Italy to compare leaf gas exchanges of Spanish Arbequina and Italian Maurino olive cultivars. Overall, from mid July to mid November, Maurino had a slightly higher maximum
light-saturated net photosynthetic rate (PNmax) than Arbequina. The lowest and the highest PNmax values were recorded at the end of July and in mid November, respectively. Current-season leaves showed similar or slightly higher PNmax values than one-year-old leaves. During the day Maurino always had slightly higher values or values similar to Arbequina, with the highest PNmax being in the morning. Maurino had similar or higher dark respiration rate (RD) values compared to Arbequina. During the day, in both cultivars the RD was lower at 9:00 than in the afternoon. The pattern of the photosynthetic irradiance-response curve was similar in the two genotypes, but the apparent quantum yield (YQ) was higher in Maurino. In both cultivars intercellular CO2 concentration (Ci) tended to increase when PNmax decreased. The increase in Ci corresponded to a decrease in stomatal conductance (gs). The transpiration rate (E) increased from mid July to the beginning of August, then decreased in September and increased again in November. Particularly in the morning, the current-season leaves showed similar or slightly higher E values than the one-year-old leaves. During the day, in both cultivars and at both leaf ages, E was higher in the afternoon. No effects on leaf gas exchanges due to the presence or absence of fruit on the shoot were found. Overall, there was satisfactory physiological adaptation for Arbequina to the conditions of Central Italy and for Maurino to the superintensive grove conditions., P. Proietti, L. Nasini, and L. Ilarioni., and Obsahuje bibliografii