In tobacco leaves inoculated with tobacco mosaic virus (TMV), changes in chlorophyll (Chl) and carotenoid contents, parameters of slow Chl fluorescence kinetics, i.e. the maximum quantum yield of photosystem (PS2) photochemistry Fv/Fm, the effective quantum yield of photochemical energy conversion in PS2 Φ2, ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS2 Fv/F0, non-photochemical quenching (NPQ), and photochemical activities of isolated chloroplasts from systemically infected tobacco leaves were investigated. We compared two successive stages of infection, the first in the stage of vein clearing at 9th day post inoculation (dpi) and the second at 22nd dpi when two different regions, i.e. light- (LGI) or dark-green (DGI) islands in the infected leaf were apparent and symptoms were fully developed. These two different regions were measured separately. The Chl and carotenoid contents in infected leaves decreased with a progression of infection and were lowest in LGI in the second stage. Also the ratio of Chl a/b declined in similar manner. The maximum quantum yield of PS2 photochemistry Fv/Fm, was decreased in the following order: first stage, DGI, and LGI. The same is true for the ratio Fv/F0. The decrease of Φ2 in infected leaves declined as compared to their controls. On the contrary, NPQ increased in infected leaves, the highest value was found in the first infection stage. Photochemical activities of the whole electron transport chain in isolated chloroplasts dramatically declined with the progression of symptoms, the lowest value was in LGI. Similarly, but to a lesser extent, the activity of PS2 in isolated chloroplasts decreased in infected leaves. Generally, the most marked impairment of the photosynthetic apparatus was manifested in the LGI of infected leaves. and N. Wilhelmová ... [et al.].
In a glasshouse, Bemisia tabaci infestation largely reduced response of photosynthesis to irradiance and CO2 concentration of Mikania micrantha compared with the non-infested control (C) ones. The maximum irradiance-saturated photosynthetic rate
(Pmax) and saturation irradiance (SI) of the infested M. micrantha were only 21.3 % and 6.5 % of the C-plants, respectively. B. tabaci infestation led to the reduction of contents of chlorophyll and carotenoids in M. micrantha, which was accompanied with the decrease of actual photosystem 2 (PS2) efficiency (ΦPS2), efficiency of excitation energy capture by open PS2 reaction centres (Fv'/Fm'), electron transport rate (ETR), and photochemical quenching (qP). Moreover, superoxide dismutase and catalase activities significantly decreased while proline and glutathione contents significantly increased in infested M. micrantha. Hence B. tabaci infestation not only induced direct damage of photosynthetic apparatus but also altered the antioxidant enzymes activities in M. micrantha, which might as consequences accelerate senescence of this weed. and L. L. Zhang, D. Z. Wen.
Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as Chl content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub during dehydration and rehydration. The net photosynthetic rate (PN), maximum photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of non-cyclic electron transport of PS2, and Chl content decreased, but non-photochemical quenching of fluorescence and carotenoid content increased in stems with the increasing of drought stress. 6 d after re-hydration, new leaves budded from stems. In the re-watered plants, the chloroplast function was restored and Chl a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in plant triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. Thus R. soongorica plants are able to sustain drought stress through leaf abscission and keep part of Chl content in stems. and D. H. Xu ... [et al.].
Different pigments often occur together and affect photosynthetic characteristics of the respective leaf portions. In this study, photosynthetic activity in variegated leaves of five cultivars of the ornamental and medicinal plant, Coleus × hybridus hort., was estimated by image analysis and point data measurements of major chlorophyll (Chl) fluorescence parameters and related to the amount of photosynthetic pigments measured with a Chl meter or spectrophotometrically in leaf extracts. Significant differences in Chl and carotenoid (Car) contents were noticed among differentially pigmented sectors of a leaf and among the cultivars. Although the higher Chl concentration was noticed in purple parts compared to green parts of the leaves, the values of minimal and maximal fluorescence yield at the dark- and light-adapted state (F0, Fm, F0', Fm', respectively) were a little lower than those in the green sectors, indicating photoprotective effects provided by anthocyanins and Car, more abundant in the red parts. The lowest Chl and Car content was detected in creamy-yellow and pink sectors and this contributed to low F0, Fm, and Fm', maximal quantum yield of PSII photochemistry, and nonphotochemical and photochemical quenching but high PSII maximum efficiency and effective quantum yield of PSII photochemistry. Both methods of Chl fluorescence analysis revealed heterogeneity in capture, transfer, and dissipation of excitation energy but Chl fluorescence imaging was more suitable in examining very narrow pigmented leaf areas., M. Borek, R. Bączek-Kwinta, M. Rapacz., and Seznam literatury
Cadmium (Cd) treatments caused an inhibition in the net photosynthetic rate (PN) of peanut (Arachis hypogaea) plants, due to the reduction of stomatal conductance (gs) and photosynthetic pigment contents, as well as the alteration in leaf structure. The decrease of the transpiration rate and gs might result from the Cd-induced xerophyte anatomic features of leaves (i.e. thick lamina, upper epidermis, palisade mesophyll, high palisade to spongy thickness ratio, as well as abundant and small stomata). The decline of PN was independent of the impairment in photosystem 2. and G. R. Shi, Q. S. Cai.
The rate of accumulation of total chlorophyll (Chl) and carotenoids (Car) of leaves grown under high irradiance, HI (30 and 45 W m-2) was faster than at moderate irradiance, MI (15 W m-2). However, the senescence phase started earlier in the samples and proceeded at a faster rate. Chl a/b and Chl (a+b)/Car values showed faster loss of Chl a (compared to Chl b) and Chl (a+b) (compared to Car) in HI leaves. Protein accumulation and loss were also similar to that of Chl (a+b) content. Increase in Chl fluorescence during the development phase may suggest a gradual change in thylakoid organisation, however, the temporal kinetics were different in HI and MI samples. Increase in fluorescence polarisation during senescence of HI leaves compared to the control (MI) suggests conversion of thylakoid membranes to gel phase. Chloroplasts prepared from HI seedlings showed higher rate of photochemical activities, however, the activity declined earlier and at faster rate compared to the control. and Rajendra K. Behera, Nakul K. Choudhury.
Two yellow rice mutants VG28-1 and VG30-5 were obtained during the tissue culture process from a rice plant (cv. Zhonghua No.11 japonica) with inserted maize Ds transposon element. Absorption spectra and pigment composition showed that two mutants had no chlorophyll (Chl) b and lower Chl a content in comparison to the wild type (WT). Net photosynthetic rate (PN), total electron transport rate (JF), photochemical quenching (qp), quantum yield of PS2 dependent non-cyclic electron transport (ΦPS2), fraction of Prate, and leaf area were lower but Fv/Fm and apparent quantum yield (AQY) remained at similar levels as in the WT plant. Xanthophyll cycle pool size (V+A+Z) on a Chl basis, and de-epoxidation state were enhanced in the mutants. The mutants had larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), especially the small subunit of RuBPCO, than WT. The characteristics of two rice mutants differed somewhat from the other common Chl b-less mutants originating from mutagenic agent treatments. and Zhi-Fang Li ... [et al.].
The activity of photosystems (PS) 1 and 2, together with the content and ratio of photosynthetic pigments, were measured in three inbred lines and two F1 hybrids of maize (Zea mays L.), grown in either optimum or low temperature (LT) conditions. The ability of chilling-stressed plants to deal with the negative effects of long-term exposure to LT and to recover the efficiency of photosynthetic apparatus after their return to optimum temperatures was examined during spring and autumn seasons. The aim was to analyse the possible differences between the rapid and gradual onset of LT on the response of young maize plants to chilling stress. The distinctive superiority of hybrids over their parental lines, found during the exposure of maize plants to LT, was not always retained after the return of chilling-stressed plants to optimum growth conditions. The response of individual genotypes to chilling stress, as well as their ability to recover the photosynthetic efficiency from the cold-induced damage, strongly depended also on the duration and the rapidity of the onset of LT. and D. Holá ... [et al.].
Morphological, anatomical and physiological frond traits of Cheilanthes persica (Bory) Mett. ex Kuhn were studied to analyze its adaptive strategy. Mean frond life span is about 340 d. Mature fronds are characterized by 91 g m-2 areal dry mass (ADM) and 217 g m-2 succulence. The reduction of frond water content in July (dehydration phase) caused a 51 % decrease in frond surface area (SA). Fronds were dry in August (desiccation phase); nevertheless, in September they showed an increased SA (rehydration phase). Chlorophyll (Chl) a/b ratio, above 3, and the well developed palisade parenchyma (two layers, total thickness of 103.9 µm) are typical for sun leaves. Chl and carotenoid contents and net photosynthetic rate (PN) increased during frond development until the highest values in April-May (maturity phase). When mean air temperature reached 31.3 °C, stomatal conductance (gs) decreased by 34 % and PN by 33 %. The high pigment contents can dissipate the excess of radiant energy, particularly under unfavourable conditions, when PN is low. Rather high PN was found during the rehydration stage. The pronounced decline of mesophyll activity during the declining phase was confirmed by the lowest PN. and L. Gratani, M. F. Crescente, G. Rossi.
Two contrasting sea buckthorn (Hippophae rhamnoides L.) populations from the low (LA) and high (HA) altitudinal regions were employed to evaluate the plant physiological responses to solar UV-A radiation and near-ambient UV-B radiation (UV-B+A) under the sheltered frames with different solar ultraviolet radiation transmittance. LA-population was more responsive to solar UV-A. Some modification caused by UV-A only existed in LA-population, such as significant reduction of leaf size, relative water content, and chlorophyll (Chl) b content as well as δ13C elevation, coupled with larger increase of contents of total carotenoids (Cars). This higher responsiveness might be an effective pre-acclimation strategy adapting for concomitant solar UV-B stress. Near-ambient UV-B+A radiation caused significant reduction of leaf size and Chl content as well as slight down-regulation of photosystem 2 activity that paralleled with higher heat dissipation, while photosynthetic rate was modestly but significantly increased. The higher photosynthesis under near-ambient UV-B+A radiation could be related to pronounced increase of leaf thickness and effective physiological modification, like the increase of leaf protective pigments (Cars and UV-absorbing compound), constant high photochemical capacity, and improved water economy. and Y. Q. Yang, Y. Yao.