We analyzed several approaches dealing with the components of non-photochemical energy dissipation and introduced improved versions of the equations used to calculate this parameter. The usage of these formulae depends on the conditions of the sample (acclimation to dark or irradiation, presence or absence of the "actinic light"). The parameter known as "excess" cannot be used as a component of energy partitioning. In reality, this parameter reflects the differences between potential and actual quantum yields of photochemistry. and D. Kornyeyev, A. S. Holaday.
In the pursuit of knowledge on the biological behavior of Brazilian Atlantic Forest tree species, this study evaluated the susceptibility of the light-demanding species, Schinus terebinthifolia Raddi., Pseudobombax grandiflorum (Cav.) A. Robyns and Joannesia princeps Vell., and of the shade-tolerant species, Hymenaea courbaril L. var. stilbocarpa and Lecythis pisonis Camb, to photoinhibition and acclimation capacity. These species were first cultivated under two irradiance conditions, I20 (20% direct sunlight radiation) and I100 (all-sky or direct sunlight) and then transferred from I20 to I100. The effects of the sudden increase in light radiation intensity on photosynthetic activity were then evaluated through chlorophyll (Chl) fluorescence imaging, HPLC xanthophylls analysis, and cell membrane lipid peroxidation measurements. Light-demanding species were found to present a higher photochemical efficiency and higher acclimation capacity under high light irradiance than shade-tolerant species. The higher photoinhibition tolerance observed in light-demanding species was associated to their higher capacity for photochemical dissipation and dissipation of excess excitation energy via the xanthophyll cycle, leading to a lower ROS generation. The obtained results suggested that a knowledge of acclimation capacity, by means of Chl fluorescence imaging yields, is a useful indicator of species successional grouping., L. Dos Anjos, M. A. Oliva, and K. N. Kuki., and Obsahuje bibliografii
Green photosynthetic stems are often responsible for photosynthesis due to the reduction of leaves in arid and hot climates. We studied the response of PSII activity to high irradiance in the photosynthetic stems of Hexinia polydichotoma in the Taklimakan Desert by analysis of the fast fluorescence transients (OJIP). Leaf clips of a chlorophyll fluorometer were used in conjunction with a sponge with a 4-mm-width groove to prevent light leakage for precise in vivo measurements. High irradiance reduced performance indices, illustrating the photoinhibition of PSII to some extent. However, the decrease in active reaction centers (RC) per PSII absorption area and maximum quantum yield indicated a partial inactivation of RCs and an increase in excitation energy dissipation, resulting in downregulation of photosynthetic excitation pressure. In addition, the increased efficiency of electron transport to PSI acceptors alleviated overexcitation energy pressure on PSII. These mechanisms protected the PSII apparatus as well as PSI against damages from excessive excitation energy. We suggested that H. polydichotoma exhibited rather photoadaptation than photodamage when exposed to high irradiance during the summer in the Taklimakan Desert. The experiment also demonstrated that the modified leaf clip can be used for studying dark adaptation in a photosynthetic stem., L. Li, Z. Zhou, J. Liang, R. Lv., and Obsahuje seznam literatury
Two yellow rice mutants VG28-1 and VG30-5 were obtained during the tissue culture process from a rice plant (cv. Zhonghua No.11 japonica) with inserted maize Ds transposon element. Absorption spectra and pigment composition showed that two mutants had no chlorophyll (Chl) b and lower Chl a content in comparison to the wild type (WT). Net photosynthetic rate (PN), total electron transport rate (JF), photochemical quenching (qp), quantum yield of PS2 dependent non-cyclic electron transport (ΦPS2), fraction of Prate, and leaf area were lower but Fv/Fm and apparent quantum yield (AQY) remained at similar levels as in the WT plant. Xanthophyll cycle pool size (V+A+Z) on a Chl basis, and de-epoxidation state were enhanced in the mutants. The mutants had larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), especially the small subunit of RuBPCO, than WT. The characteristics of two rice mutants differed somewhat from the other common Chl b-less mutants originating from mutagenic agent treatments. and Zhi-Fang Li ... [et al.].
Net photosynthetic rate of yellow upper leaves (UL) of Ligustrum vicaryi was slightly, but not significantly higher than that of green lower leaves (LL). Diurnally, maximum photochemical efficiency of photosystem 2, PS2 (Fv/Fm) of LL did not significantly decline but the UL showed fairly great daily variations. Yield of PS2 of UL showed an enantiomorphous variation to the photosynthetically active radiation and was significantly lower than in the LL. Unlike Fv/Fm, the efficiency of energy conversion in PS2 and both non-photosynthetic and photosynthetic quenching did not differ in UL and LL. Significant differences between UL and LL were found in contents of chlorophyll (Chl) a, b, and carotenoids (Car) and ratios of Chl a/b, Chl b/Chl (a+b), and Car/Chl (a+b). Leaf colour dichotocarpism in L. vicaryi was mainly caused by different photon utilization; sunflecks affected the LL. and Y. Q. Yang, X. F. Yi, P. Prasad.