In the course of dehydration, the gas exchange and chlorophyll (Chl) fluorescence were measured under irradiance of 800 μmol m-2 s-1 in detached apple leaves, and the production of active oxygen species (AOS), hydrogen peroxide (H2O2), superoxide (O2-), hydroxyl radical (-OH), and singlet oxygen (1O2), were determined. Leaf net photosynthetic rate (PN) was limited by stomatal and non-stomatal factors at slight (2-3 h dehydration) and moderate (4-5 h dehydration) water deficiency, respectively. Photoinhibition occurred after 3-h dehydration, which was defined by the decrease of photosystem 2 (PS2) non-cyclic electron transport (P-rate). After 2-h dehydration, an obvious rise in H2O2 production was found as a result of photorespiration rise. If photorespiration was inhibited by sodium bisulfite (NaHSO3), the rate of post-irradiation transient increase in Chl fluorescence (Rfp) was enhanced in parallel with a slight decline in P-rate and with an increase in Mehler reaction. At 3-h dehydration, leaf P-rate decrease could be blocked by glycine (Gly) or methyl viologen (MV) pre-treatment, and MV was more effective than Gly at moderate drought time. AOS (H2O2 and O2-), prior to photoinhibition produced from photorespiration and Mehler reaction in detached apple leaves at slight water deficiency, were important in dissipating photon energy which was excess to the demand of CO2 assimilation. So photoinhibition could be effectively prevented by the way of AOS production. and H. S. Jia, Y. Q. Han, D. Q. Li.
Four grapevine cultivars, i.e. Cabernet Sauvignon (a member of the Western Europe cultivar group), Rizamat (a member of the East cultivar group), Red Double Taste (a hybridized cultivar from Vitis vinifera L. and V. labrusca L.), and 1103Paulsen (a hybridized rootstock), were treated by three severity orders of drought stress for 25 d. Then net photosynthetic rate (PN), maximal photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPS2) of photosystem 2, total electron transport rate (JT), and electron transport flows used in carboxylation (JC) and in oxygenation (JO) reactions catalysed by ribulose-1,5-bisphosphate carboxylase/oxygenase were determined. PN was determined again after re-watering for 2 d by gas exchange measurement. Along with the increase in severity of drought stress, PN, Fv/Fm, ΦPS2, JT, and JC in all four cultivars decreased. The range of decrease differed among cultivars. JO expressed various trends from cultivar to cultivar. In Rizamat that received slight and moderate drought stress, PN evidently decreased, but JO markedly increased, thus maintaining high values of JT and ΦPS2. Prior to the moderate drought stress, the Fv/Fm was high in Rizamat, indicating that the photodamage had not happened ahead of the moderate drought stress given. Under the severe drought stress, the photorespiration rate in Rizamat decreased by 70 %, and JT, ΦPS2, and Fv/Fm also dropped to very low values, i.e. the photodamage of photosynthetic apparatus has taken place. This suggested that the photorespiration has consumed the excessive assimilatory power and the photo-protective function of photorespiration is very important for Rizamat. When Cabernet Sauvignon grew under drought stress, its JO decreased in a small range, thus maintaining higher values of JC, JT, ΦPS2, and Fv/Fm; hence no serious photodamage occurred. Despite of the fact that PN of cv. Red Double Taste decreased markedly under the slight drought stress, JO still increased under the severe drought stress. This suggests that photorespiration is important in photoprotection under drought stress. JO in cv. 1103Paulsen markedly decreased under slight stress. Accordingly, PN, Fv/Fm, ΦPS2, JT, and JC decreased to extremely low values. Thus photorespiration effectively protects the photosynthetic apparatus from photo-damage under drought, assists in maintaining a relatively high ΦPS2, and helps PN to be rapidly recovered after re-watering. and X. Q. Guan ... [et al.].