Hyperglycemia is known to cause oxidative stress that leads mainly to enhanced production of mitochondrial reactive oxygen species (ROS). It has been demonstrated that hyperbaric oxygen (HBO) treatment also increases the formation of ROS. There are, however, no comprehensive evaluations of such oxidative effects in diabetes which requires HBO treatment. The purpose of this study is to investigate the influence of a clinically-recommended HBO treatment on glucose homeostasis and oxidative stress in rats with streptozotocin (STZ)-induced diabetes. Under the clinically-used HBO exposure protocol, the levels of blood glucose, thiobarbituric acid reactive substances (TBARS) as a lipid peroxidation marker, and the activity of superoxide dismutase (SOD) as an antioxidant enzyme marker were investigated in the erythrocytes, liver, pancreas, skeletal muscle, and brain of rats with STZ-induced diabetes. The levels of blood glucose and TBARS increased significantly (p<0.05), and the activity of SOD decreased significantly (p<0.05) in the erythrocytes and all organs of rats with diabetes subjected to HBO exposure. These results suggested that HBO exposure might boost glucose autoxidation and increase ROS production in STZ-induced diabetes as side-effects of administering HBO treatment for the first time., T. Matsunami ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu2+ induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern., R. Večeřa, N. Škottová, P. Váňa, L. Kazdová, Z. Chmela, Z. Švagera, D. Walterová, J. Ulrichová, V. Šimánek., and Obsahuje bibliografii
The consequences of increased oxidative stress, measured as the level of malondialdehyde (MDA) during ischemia/reperfusion, were studied in 48 patients in the acute phase of myocardial infarction (AMI) and a control group (21 blood donors). The serum levels of a-tocopherol and b-carotene were followed. Immediately after the treatment onset the level of a-tocopherol started to decrease, reaching a plateau after 24 h. The consumption of b-carotene was delayed by 90 min. Steady decline was detected during the whole time interval studied (48 h). Glutathione peroxidase (GPx) activity, as a representative of antioxidant enzymes, was estimated in whole blood. The influx of oxygenated blood was accompanied by a stimulation of GPx activity, which reached its maximum at the time of completed reperfusion. When comparing the AMI patients with the control group, the levels of MDA were found significantly increased, which indicates that oxidative stress is already increased during ischemia. Lower antioxidant levels found in the patients might either already be the result of vitamin consumption during ischemia or be a manifestation of their susceptibility to AMI. Monitored consumption of a-tocopherol and b-carotene during reperfusion indicated that in the case of patients, whose level of antioxidant vitamins is below the threshold limit, a further substantial decrease of antioxidant vitamins during reperfusion could enhance the oxidative damage of the myocardium., V. Mužáková, R. Kanďár, P. Vojtíšek, J. Skalický, R. Vaňková, A. Čegan, Z. Červinková., and Obsahuje bibliografii
Experimental data on the effect of nicotine on cerebral microvessel thrombosis is lacking. Therefore, this study was carried out to elucidate the effects of nicotine on platelet aggregation in cerebral (pial) microcirculation of the mouse, and the possible protective effect of vitamins C and E. Male TO mice were divided into six groups, and injected i.p. with saline as a control, nicotine (1 mg/kg), vi tamin C alone (100 mg/kg), vitamin E alone (100 mg/kg), nicotine plus vitamin C or nicotine plus vitamin E, all for one week before the experiment. After one week, platelet aggregation in ce rebral microvessels of these groups of mice were studied in vivo . The appearance of the first platelet aggregation and total blood flow stop in arterioles and venules were timed in seconds. In the animals treated with nicotine, venules did not show any alteration in the platelet aggregation time in comparison to the control animals. However, in arterioles platelet aggreg ation time was significantly accelerated (p<0.001) in nicotine-treated animals as compared to controls. Both vitamins C and E prevented the shortening of arteriolar platelet aggregation ti me significantly (p<0.001) when applied with nicotine but not alone. It can be concluded that nicotine enhances the susceptibility to thrombosis in the cerebral arterioles in vivo and that vitamins C and E have alleviating effect on nicotine-induced thrombotic events in mice pial microvessels., M. A. Fahim ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Various reactive oxygen species (ROS) may be produced from normal biochemical, essential metabolic processes or from external sources as exposure to a variety of agents presented in the environment. Lipids, proteins, carbohydrates and DNA are all capable of reacting with ROS and can be implicated in etiology of various human disorders (rheumatoid arthritis, reperfusion injury, atherosclerosis, lung diseases etc.). In the organism damage by ROS is counteracted with natural antioxidants (glutathione peroxidases, superoxide dismutases, catalase, glutathione, ubiquinol, uric acid, and essential minerals) and nutritional antioxidants from diet (i.e. vitamins E, C, carotenoids). Possible mechanisms of nutritional depletion and side effects of high intake are in the article described., Z. Zadák ... [et al.]., and Obsahuje seznam literatury
Apolipoprotein B (apo B) is the major protein component of LDL, VLDL and chylomicrons. Numerous polymorphisms of the apolipoprotein B gene have been described. Particularly, the insertion/deletion polymorphism located in the coding part of the signal peptide of apo B, associated with modification of lipid concentrations and the risk of cardiovascular disease, has been reported in the general population. No such study in the Tunisian population has been performed. The aim of our study was to assess the effect of insertion/deletion polymorphism of the apolipoprotein B gene on lipid levels in a sample of the Tunisian population. A total of 458 unrelated subjects (321 men and 137 women) were included. The insertion/deletion polymorphism was determined by electrophoresis on polyacrylamide gels after PCR amplification. The relative frequencies of the Ins and Del alleles were 0.74 and 0.26, respectively. These frequencies were similar to those found in other Caucasian populations. There was no significant difference in serum TC, TG, and HDL-C levels due to the influence of the genotypes. However, significant variation among the three genotypes was seen for LDL-cholesterol (p<0.001) and apo B (p<0.001) levels. Individuals homozygous for the Del allele had higher levels than individuals homozygous for the Ins allele, while individuals heterozygous for both alleles exhibited intermediate levels. When the data were analyzed in men and women separately, a similar effect was seen in both groups. Our results show that distribution of apo B insertion/deletion polymorphism in Tunisians is similar to other Caucasian population and confirm the reported association with serum LDL-cholesterol and apo B concentrations., A. Kallel, M. Fekl, M. Elasmi, M. Souissi, H. Shanhaji, S. Omar, S. Haj Taieb, R. Jemaa, N. Kaabachi., and Obsahuje bibliografii a bibliografické odkazy
Apolipoproteins E and CI are the predominant components of triglyceride-rich lipoproteins. The genes are located in one gene cluster and both are polymorphic. Three allelic (ε2, ε3 and ε4) polymorphisms of the APOE gene influence plasma cholesterol levels. The distribution of these alleles differ between ethnic groups. PCR genotyping was used to determine the APOE and APOCI allele incidence in a representative group of 653 probands (302 men and 351 women) of Czech origin. The observed relative frequencies for the ε2, ε3 and ε4 alleles were 7.1 %, 82.0 % and 10.9 %, respectively, and are similar to other middle European populations. APO ε4 carriers have the highest and APO ε2 carriers the lowest levels of plasma total cholesterol (p<0.0001) and LDL cholesterol (p<0.0001). The frequency of the insertion (I) allele (HpaI restriction site present) of the APOCI polymorphism was 18.5 %. APOCI I/I homozygotes have the highest level of triglycerides (p<0.003). An almost complete linkage disequilibrium of the insertion allele of APOCI with the APOE alleles ε2 and ε4 has been detected and suggests that the deletion in the APOCI gene probably follows the deriving of all three APOE alleles on the APO ε3 allele background., J. A. Hubáček, J. Piťha, V. Adámková, Z. Škodová, V. Lánská, R. Poledne., and Obsahuje bibliografii
The effect of phagocytosis of living bacteria on apoptotic DNA changes was examined in pig leukocytes in relation to immune system maturation. Blood samples of pigs (aged 6, 12 and 18 weeks) were cultivated with a suspension of bacterial cells Salmonella typhimurium LB 5000 at 37 °C. In the experimental groups, killed bacteria and microspheric particles were used to detect the influence of the phagocytic process. Phagocytic activity and index were determined in each sample by means of microspheric particles. The ability to kill engulfed microbes (bactericidal capacity) was estimated from the decrease in bacterial colony-forming units (CFU). Samples of cultured cells were taken for DNA analysis at given intervals. DNA ladder assay was used for qualitative apoptotic DNA break detection and the TUNEL AP test was employed for quantification of apoptosis. In 18-week-old animals, spontaneous DNA degradation was observed in the control group without phagocytosis after 8 h. In contrast, cells cultivated with microspheric particles or killed bacteria became apoptotic after 4 h. The rate of apoptotic DNA degradation was decreased in the group exposed to living bacteria. This prolonged survival of phagocytes was also detected in 12-week-old animals, but not at 6 weeks of age. These findings were supported by the ability of phagocytes in 6-week-old animals to engulf microbes, but their killing (bactericidal) ability was significantly decreased in comparison with other stages of immune system maturation. These results suggest that the process of phagocytosis itself is accompanied by activation of the apoptotic program in phagocytic cells of the pig immune system, but the presence of phagocyted living bacteria can delay this activation. The prolonged survival of short-lived cells was only observed in later phases of immune system maturation., E. Matalová, A. Španová, F. Kovářů., and Obsahuje bibliografii
Ever since proteomics was proven to be capable of characterizing a large number of differences in both protein quality and quantity, it has been applied in various areas of biomedicine, ranging from the deciphering molecular pathogenesis of diseases to the characterization of novel drug targets and the discovery of potential diagnostic biomarkers. Indeed, the biomarker discovery in human plasma is clearly one of the areas with enormous potential. However, without proper planning and implementation of specific techniques, the efforts and expectations may very easily be hampered. Numerous earlier projects aimed at clinical proteomics, characterized by exaggerated enthusiasm, often underestimated some principal obstacles of plasma biomarker discovery. Consequently, ambiguous and insignificant results soon led to a more critical view in this field. In this article, we critically review the current state of proteomic approaches for biomarker discovery and validation, in order to provide basic information and guidelines for both clinicians and researchers. These need to be closely considered prior to initiation of a project aimed at plasma biomarker discovery. We also present a short overview of recent applications of clinical proteomics in biomarker discovery., V. Tambor ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy