Hyperglycemia is known to cause oxidative stress that leads mainly to enhanced production of mitochondrial reactive oxygen species (ROS). It has been demonstrated that hyperbaric oxygen (HBO) treatment also increases the formation of ROS. There are, however, no comprehensive evaluations of such oxidative effects in diabetes which requires HBO treatment. The purpose of this study is to investigate the influence of a clinically-recommended HBO treatment on glucose homeostasis and oxidative stress in rats with streptozotocin (STZ)-induced diabetes. Under the clinically-used HBO exposure protocol, the levels of blood glucose, thiobarbituric acid reactive substances (TBARS) as a lipid peroxidation marker, and the activity of superoxide dismutase (SOD) as an antioxidant enzyme marker were investigated in the erythrocytes, liver, pancreas, skeletal muscle, and brain of rats with STZ-induced diabetes. The levels of blood glucose and TBARS increased significantly (p<0.05), and the activity of SOD decreased significantly (p<0.05) in the erythrocytes and all organs of rats with diabetes subjected to HBO exposure. These results suggested that HBO exposure might boost glucose autoxidation and increase ROS production in STZ-induced diabetes as side-effects of administering HBO treatment for the first time., T. Matsunami ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The diurnal variation of net photosynthetic (PN) and transpiration (E) rates in soybean [Glycine max (L.) Merr. cv. Fukuyutaka] plants grown under 100, 50, or 25 % of full sun irradiance (I100, I50, I25 plants) were compared. In the morning, activities of the plants were measured at irradiances under which they grew. However, during the afternoon, all the plants were tested under full irradiance. The lower the growth irradiance, the lower PN, E, and mesophyll conductance values were found. Stomatal conductance was considerably lower in I25 plants only. Both the increase in specific leaf area (SLA) and the decrease in nitrogen content per leaf area unit contributed to the PN reduction of soybean plants grown under low irradiances. Though E of the plants grown under different irradiances differed less markedly than PN, the water use efficiency declined from I100 to I25. and Y. Koesmaryono ... [et al.].