The effect of phagocytosis of living bacteria on apoptotic DNA changes was examined in pig leukocytes in relation to immune system maturation. Blood samples of pigs (aged 6, 12 and 18 weeks) were cultivated with a suspension of bacterial cells Salmonella typhimurium LB 5000 at 37 °C. In the experimental groups, killed bacteria and microspheric particles were used to detect the influence of the phagocytic process. Phagocytic activity and index were determined in each sample by means of microspheric particles. The ability to kill engulfed microbes (bactericidal capacity) was estimated from the decrease in bacterial colony-forming units (CFU). Samples of cultured cells were taken for DNA analysis at given intervals. DNA ladder assay was used for qualitative apoptotic DNA break detection and the TUNEL AP test was employed for quantification of apoptosis. In 18-week-old animals, spontaneous DNA degradation was observed in the control group without phagocytosis after 8 h. In contrast, cells cultivated with microspheric particles or killed bacteria became apoptotic after 4 h. The rate of apoptotic DNA degradation was decreased in the group exposed to living bacteria. This prolonged survival of phagocytes was also detected in 12-week-old animals, but not at 6 weeks of age. These findings were supported by the ability of phagocytes in 6-week-old animals to engulf microbes, but their killing (bactericidal) ability was significantly decreased in comparison with other stages of immune system maturation. These results suggest that the process of phagocytosis itself is accompanied by activation of the apoptotic program in phagocytic cells of the pig immune system, but the presence of phagocyted living bacteria can delay this activation. The prolonged survival of short-lived cells was only observed in later phases of immune system maturation., E. Matalová, A. Španová, F. Kovářů., and Obsahuje bibliografii
The term cellular immune response refers to haemocyte-mediated responses, including phagocytosis, nodulation, and encapsulation. In the present study, we identified five types of circulating haemocytes in larvae of the haemolymph of the Asian corn borer, Ostrinia furnacalis (Guenée), including granulocytes, oenocytoids, plasmatocytes, prohaemocytes, and spherulocytes. The relative number of total free haemocytes per larva decreased significantly 0.5, 24, and 36 h after the injection of Beauveria bassiana conidia. Upon conidia challenge, both phagocytosis and nodulation were observed in the collected haemolymph from O. furnacalis larvae. In addition, plasma was found to be necessary for both phagocytosis and nodulation. Therefore, we here confirm that phagocytosis and nodulation are involved in O. funacalis larvae during their fight against infection by B. bassiana, and further, that the cellular immune response of O. furnacalis helps eliminate the invading organisms despite the fact that not all the fungal conidia are killed., Dongxu Shen, Miao Li, Yuan Chu, Minglin Lang, Chunju An., and Obsahuje bibliografii