Komunikace mezi buňkami mnohobuněčného organismu je nezbytná k zajištění přežití organismu, správné funkce tkání a orgánů, tvorby energie, růstu a vývoje. Bílkoviny sekretované z buněk jsou hlavními molekulami, které zprostředkovávají mezibuněčnou komunikaci na malé i velké vzdálenosti. Většina sekretovaných bílkovin je z buněk uvolňována cestou přes endoplasmatické retikulum a Golgiho aparát. Vývoj nových laboratorních technik pro studium sekretovaných bílkovin umožnil v posledním desetiletí studovat a popsat sekreci mnoha typů buněk., Communication among cells in a multicellular organism is fundamental for the correct functioning of organs and tissues, energy production, growth and development, to assure survival and reproduction of the organism. Proteins secreted by cells are principal molecules for intercellular communication at both short and long distances. Most of the secreted proteins are released through the endoplasmic reticulum – the Golgi pathway. The significant development of analytical techniques for detection of secreted proteins in the last 10 years has enabled us to explore the secretion of various cell types., and Helena Kupcová Skalníková.
Metabolic consequences of direct muscle trauma are insufficiently defined. Their effects on the ubiquitin-proteasome pathway (UPP) of protein degradation in human skeletal muscles are as yet unknown. Thus, we investigated whether the UPP is involved in the metabolic response evoked in directly traumatized human skeletal muscles. Biopsies were obtained from contused muscles after fractures and from normal muscles during elective implant removal (control). As estimated by western blot analyses, concentrations of free ubiquitin and ubiquitin protein conjugates were similar in extracts from injured and uninjured muscles. Ubiquitin protein ligation rates were reduced after injury (1.5±0.2 vs. 1.0±0.15 fkat/μg; p=0.04). Chymotryptic-, tryptic- and caspase-like proteasome peptidase activities (total activity minus activity in the presence of proteasome inhibitors) increased significantly after trauma (p=0.04 - 0.001). Significant increases in total chymotryptic- and caspase-like activities were attributable to proteasome activation. Our results extend the possible role of the UPP in muscle wasting to direct muscle trauma. They further suggest that the effects of direct mechanical trauma are not limited to the proteasome and imply that ubiquitin protein ligase systems are also involved. Based on the potential role of the UPP in systemic diseases, it might also be a therapeutic target to influence muscle loss in critically ill blunt trauma patients, in which large proportions of muscle are exposed to direct trauma. and Obsahuje bibliografii a bibliografické odkazy
Oxidative stress has been implicated to play a major role in aging and age-related diseases. In the present study, we investigated the effects of aging on the total antioxidant capacity, uric acid, lipid peroxidation, total sulfhydryl group content and damage to DNA in adult (6 months), old (15 months) and senescent (26 months) male Wistar rats. The antioxidant capacity, determined by phycoerythrin-based TRAP method (total peroxyl radical-trapping potential) was significantly decreased in the plasma and myocardium of old and senescent rats, whereas plasma level of uric acid was elevated in 26-month-old rats. Age-related decline in plasma and heart antioxidant capacity was accompanied by a significant loss in total sulfhydryl group content, increased lipid peroxidation and higher DNA damage in lymphocytes. Correlations between TRAP and oxidative damage to lipids, proteins and DNA suggest that the decline in antioxidant status may play an important role in age-related accumulation of cell damage caused by reactive oxygen species., M. Sivoňová, Z. Tatarková, Z. Ďuračková, D. Dobrota, J. Lehotský, T. Matáková, P. Kaplán., and Obsahuje bibliografii a bibliografické odkazy
Retinol binding protein 4 (RBP4) is a novel adipokine which might be involved in the development of insulin resistance. The aim of the study was to investigate the expression of RBP4 mRNA in subcutaneous and visceral fat depots and the relationship between RBP4 plasma and mRNA levels relative to indices of adiposity and insulin resistance. In 59 Caucasian women (BMI 20 to 49 kg/m2 ) paired samples of subcutaneous and visceral fat were obtained for RBP4, leptin and GLUT 4 mRNA analysis using reverse transcription-quantitative PCR. Euglycemic hyperinsulinemic clamp and computed tomography scans were performed. RBP4 mRNA levels as well as GLUT 4 mRNA and leptin mRNA levels were lower (P<0.001, P<0.01 and P<0.001, respectively) in visceral compared to subcutaneous fat. No differences were found in RBP4 mRNA expression in the two fat depots or in RBP4 plasma levels between subgroups of non-obese subjects (n=26), obese subjects without metabolic syndrome (n=17) and with metabolic syndrome (n=16). No correlations between RBP4 mRNA or plasma levels relative to adiposity, glucose disposal rate and GLUT 4 mRNA expression in adipose tissue were found. There was a weak positive correlation between plasma RBP4 and plasma triglycerides (r = 0.30, p<0.05) and between plasma RBP4 and blood glucose (r = 0.26, p<0.05). Regardless of the state of adiposity or insulin resistance, RBP4 expression in humans was lower in visceral than in subcutaneous fat. We found no direct relationship between either RBP4 mRNA or its plasma levels and the adiposity or insulin resistance. and Obsahuje bibliografii a bibliografické odkazy
Serum adipocyte fatty acid-binding protein (FABP) concentrations are linked to human obesity and other features of metabolic syndrome. Whether FABP associates with metabolic alterations in chronic malnutrition is unknown. In the present study, we measured fasting serum levels of FABP, leptin, soluble leptin receptor, adiponectin, resistin, C-reactive protein (CRP), insulin, glucose, cholesterol and triglycerides in 19 patients with a restrictive type of anorexia nervosa (AN) and in 16 healthy age-matched control women (C). Body mass index, serum leptin, and CRP concentrations were significantly lower, while serum adiponectin and soluble leptin receptor levels were significantly higher in AN relative to C group. Serum insulin, glucose, cholesterol and triglyceride levels did not differ between the groups studied. Serum FABP leve ls were unchanged in patients with AN and were not related to any of parameters studied. We conclude that, in contrast to patients with obesity where FAPB is a prominent marker of metabolic alterations, chronic malnutrition in AN does not significantly affect its serum levels., D. Haluzíková ... [et al.]., and Obsahuje seznam literatury
This study was designed to investigate effect of alpha-lipoic acid (LA) on lipid peroxidation, nitric oxide production and antioxidant systems in rats exposed to chronic restraint stress. Twenty four male Wistar rats, aged three months, were divided into four groups: control (C), the group treated with LA (L), the group exposed to restraint stress (S) and the group exposed to stress and treated with LA (LS). Restraint stress was applied for 21 days (1 h/day) and LA (100 mg/kg/day) was injected intraperitonally to the L and LS groups for the same period. Restraint stress significantly decreased brain copper/zinc superoxide dismutase (Cu,Zn-SOD) and brain and retina glutathione peroxidase (GSH-Px) and catalase (CAT) activities compared with the control group. Thiobarbituric acid reactive substances (TBARS), nitrite and nitrate levels were significantly increased in the tissues of the S group compared with the C group. LA produced a significant decrease in brain and retina TBARS, nitrite and nitrate levels of the L and LS groups compared to their corresponding control groups. LA increased all enzyme activities in the tissues of the LS group compared to the S group. Our study indicated that LA is an ideal antioxidant candidate for the prevention of stress-induced lipid peroxidation., D. Akpinar, P. Yargiçoğlu, N. Derin, Y. Alicigüzel, A. Ağar., and Obsahuje bibliografii a bibliografické odkazy
The aim of this study was to determine the effects of insulin infusion on oxidative stress induced by acute changes in glycemia in non-stressed hereditary hypertriglyceridemic rats (hHTG) and Wistar (control) rats. Rats were treated with glucose and either insulin or normal saline infusion for 3 hours followed by 90 min of hyperglycemic (12 mmol/l) and 90 min of euglycemic (6 mmol/l) clamp. Levels of total glutathione (GSH), oxidized glutathione (GSSG) and total antioxidant capacity (AOC) were determined to assess oxidative stress. In steady states of each clamp, glucose infusion rate (GIR) was calculated for evaluation of insulin sensitivity. GIR (mg.kg-1.min-1) was significantly lower in hHTG in comparison with Wistar rats; 25.46 (23.41 - 28.45) vs. 36.30 (27.49 - 50.42) on glycemia 6 mmol/l and 57.18 (50.78 - 60.63) vs. 68.00 (63.61 - 85.92) on glycemia 12 mmol/l. GSH/GSSG ratios were significantly higher in hHTG rats at basal conditions. Further results showed that, unlike in Wistar rats, insulin infusion significantly increases GSH/GSSG ratios in hHTG rats: 10.02 (9.90 - 11.42) vs. 6.01 (5.83 - 6.43) on glycemia 6 mmol/l and 7.42 (7.15 - 7.89) vs. 6.16 (5.74 - 7.05) on glycemia 12 mmol/l. Insulin infusion thus positively influences GSH/GSSG ratio and that way reduces intracellular oxidative stress in insulin-resistant animals., M. Žourek, P. Kyselová, J. Mudra, M. Krčma, Z. Jankovec, S. Lacigová, J. Víšek, Z. Rušavý., and Obsahuje bibliografii a bibliografické odkazy
Molecular modeling of the H4-H5-loop of the α2 isoform of Na+/K+-ATPase in the E1 and E2 conformations revealed that twisting of the nucleotide (N) domain toward the phosphorylation (P) domain is connected with the formation of a short π-helix between Asp369 and Thr375. This conformational change close to the hinge region between the N-domain and the P-domain could be an important event leading to a bending of the N-domain by 64.7° and to a shortening of the distance between the ATP binding site and the phosphorylation site (Asp369) by 1.22 nm from 3.22 nm to 2.00 nm. It is hypothesized that this shortening mechanism is involved in the Na+-dependent formation of the Asp369 phospho-intermediate as part of the overall Na+/K+-ATPase activity., G. Tejral ... [et al.]., and Obsahuje seznam literatury
Tuto otázku si kladou lidé již od počátku lidstva. Pro členy Laboratoře biochemie a molekulární biologie zárodečných buněk v Ústavu živočišné fyziologie a genetiky AV ČR v Liběchově je odpověď jasná, jelikož na počátek vzniku nového jedince nahlíží prostřednictvím molekulární biologie. První bylo vajíčko. and Denisa Jansová.
Medical genetic research achieved in last decade many efforts leading to better understanding of inherited basis of human diseases. This will not be possible without the participation of patients and controls. However, the general understanding of the background and possibilities of genetic association studies is very low. It was confirmed by study of university of students. Because of the fair of misuses of the individual genetic information, significant part of participants refused the use of already donated blood samples for genetic testing but agreed with using of buccal swabs for the same analysis. To enhance the general knowledge’s of the population, leading to realistic expectations not just about genetic predictive power but also about the eventual risks in behind will be the major mission in the next years., V. Adámková ... [et al.]., and Obsahuje seznam literatury