Many species of carabid beetles are important pre- and post-dispersal seed feeders of herbaceous plants. Here we summarise data from dissections, field observations, rearing and "cafeteria" experiments on 55 granivorous and 188 omnivorous species that occur in Italy. We tested the hypothesis that seed feeding carabids are restricted to taxa with pronounced morphological adaptations for manipulating and crushing seeds in both the larval and adult stages. The feeding guilds of carabids were rearranged into the following groups: (i) strict predators with long mandibles and predaceous larvae, often depending also on non-prey food; (ii) omnivorous species with stout mandibles and larvae of a seed-eating morphotype; (iii) granivorous species, feeding only on seeds with larvae sometimes of the scarabeoid c-form type. The seed feeding carabids in the Italian fauna belong to the tribe Zabrini (Amara and Zabrus genera) and to all the Harpalinae (sub)tribes, from Anisodactylini to Ditomina. The time of reproduction seems to be associated with habitat preference; wetland or dry open land, rather than true granivorous versus omnivorous habits, but in stenophagous seed feeders, a phenological coincidence with particular plants is sometimes recorded., Federica Talarico, Anita Giglio, Roberto Pizzolotto, Pietro Brandmayr., and Obsahuje bibliografii
A new genus, Afromuelleria gen. n., assigned to the tribe Trachyphloeini Lacordaire, 1863, is described for four South African species of weevils: A. awelani sp. n., A. baobab sp. n., A. limpopo sp. n. and A. venda sp. n. All species are illustrated and keyed. Taxonomic status of the new genus is discussed and compared with similar genera of Trachyphloeini and Embrithini Marshall, 1942.
The altitudinal gradient in diversity of dung beetles (Scarabaeidae) was studied in a Mediterranean mountain chain located in Central Anatolia to (i) determine if there are altitudinal differences between the main taxonomic groups, (ii) describe the seasonal variations in these assemblages and (iii) assess whether closed habitats influence dung beetle diversity differentially at different altitudes. Beetles were collected throughout a year at 14 localities between 469 and 1810 m above sea level in three different types of habitats. Dung beetle assemblages at 400 to 1200 m did not vary greatly in species richness, abundance and biomass. However, they varied in composition, with the assemblages dominated by species of Scarabaeinae up to 900 m, whereas in the mid-mountain assemblages (from 900 m to 1600 m) the numbers of species of Aphodiinae was higher. The decline with increase in altitude in richness, abundance and biomass of both small and large species of Scarabaeinae up to 1500 m, together with the constancy of these parameters in the case of Aphodiinae, accounts for the changes in the composition from the lowland to mid-mountain localities. Unlike at other Mediterranean localities, the open/closed structure of the habitat only slightly influences these assemblages independently of altitude or season. The general seasonal pattern follows the classical Mediterranean bimodal pattern associated with summer drought, but the patterns are more complex when the seasonal responses of the different groups and at different localities are analysed separately. We propose that the interplay between local climatic conditions (mainly temperature) and evolutionary conserved species preferences accounts for both the current seasonal and altitudinal gradients and the changes in species composition in terms of Aphodiinae and Scarabaeinae.
Classical biological control is an important means of managing the increasing threat of invasive plants. It constitutes the introduction of natural enemies from the native range of the target plant into the invaded area. This method may be the only cost-effective solution to control the rapidly expanding common ragweed, Ambrosia artemisiifolia, in non-crop habitats in Europe. Therefore, candidate biocontrol agents urgently need to be assessed for their suitability for ragweed control in Europe. A previous literature review prioritized the host-specific leaf beetle Ophraella slobodkini as a candidate agent for ragweed control in Europe, whereas it rejected its oligophagous congener O. communa. Meanwhile, O. communa was accidentally introduced and became established south of the European Alps, and we show here that it is expanding its European range. We then present a short version of the traditional pre-release risk-benefit assessment for these two candidate agents to facilitate fast decision-making about further research efforts. We selected two complementary tests that can be conducted relatively rapidly and inform about essential risks and benefits. We conducted a comparative no-choice juvenile performance assay using leaves of ragweed and sunflower, the most important non-target plant, in Petri dishes in climatic conditions similar to that in the current European range of O. communa. This informs on the fundamental host range and potential for increasing abundance on these host plants. The results confirm that O. slobodkini does not survive on, and is hence unlikely to cause severe damage to sunflower, while O. communa can survive but develops more slowly on sunflower than on ragweed. In parallel, our species distribution models predict no suitable area for the establishment of O. slobodkini in Europe, while O. communa is likely to expand its current range to include a maximum of 18% of the European ragweed distribution. Based on this early assessment, the prioritization and further assessment of O. slobodkini seem unwarranted whereas the results urgently advocate further risk-benefit analysis of O. communa. Having revealed that most of the European area colonized by ragweed is unlikely to be suitable for these species of Ophraella we suggest the use of such relatively short and cheap preliminary assessment to prioritise other candidate agents or strains for these areas., Suzanne T. E. Lommen, Emilien F. Jolidon, Yan Sun, José I. Bustamante Eduardo, Heinz Müller-Schärer., and Obsahuje bibliografii
Seeds of many species of plants may survive for a long time in the soil and germinate when brought to the surface, but
whether they are subsequently eaten by seed predators is unknown. We examined the preferences of three species of carabids
(Coleoptera: Carabidae) for 25 species of seeds and determined the difference in palatability between freshly dispersed and those
buried for six years. The stability of their preferences was tested using a collection of seeds of different species, each of which was
offered fresh or after being buried. Carabid beetles readily accepted previously buried seeds as food. In total, Pseudoophonus
rufi pes and Amara littorea ate more fresh seeds than previously buried seeds, while the opposite was true for Harpalus affi nis. The
seeds of some species were even more attractive to carabids after burial than in the fresh state. For all the species of carabids
tested, the diet breadth was similar when the beetles were fed fresh or buried seeds, but the preferences for fresh and buried seed
of particular species were correlated only in P. rufi pes and A. littorea. We measured the seed characteristics (mass and viability)
likely to be associated with the loss of attractiveness to carabids during burial. The change in carabid consumption was not related
to changes in any of these characteristics. This fi nding indicates that factors responsible for variation in seed acceptability are
complex. This study provides the fi rst conclusive evidence that invertebrate seed predators will feed on seeds from seed banks,
although they prefer fresh seeds.
Satellite DNAs are the major repetitive DNA components in eukaryotic genomes. Although satellite DNA has long been called "parasite DNA" there is substantial evidence that it could be associated with some functions of chromosome biology. Ladybird beetles (Coccinellidae) are one of the largest and most important groups of beetles. Many ladybirds are of economic interest as biological control agents because they eat some agricultural pests such as aphids and scale insects. However, other species are phytophagous and can damage crops. Despite the ecological importance of the latter group there are no studies on their satellite DNA. A satellite DNA family was isolated and characterized in the ladybird Henosepilachna argus. This satellite DNA is organized in tandem repeats of 658 bp and is A + T rich (67.3%). The recorded high sequence conservation of the monomers together with the detection of putative gene conversion processes indicate concerted evolution. Reverse transcription polymerase chain reaction (RT-PCR) revealed that this satellite DNA is transcribed and in situ hybridization its location in the subtelomeric regions of all chromosomes except the long arm of the X chromosome. The presence of this satellite DNA in other species of the genus Henosepilachna and Epilachna was also tested using PCR. The results indicate that this satellite DNA sequence is so far specific to H. argus., Pablo Mora, Jesús Vela, Areli Ruiz-Mena, Teresa Palomeque, Pedro Lorite., and Obsahuje bibliografii
In the present work, we have characterized the chromosomes of 13 Cassidinae beetles, belonging to four tribes, the broad aim being to increase the cytogenetic data and establish the mechanisms involved in chromosome evolution of this subfamily, which appear to be conserved karyotypically, i.e. 2n = 16 + Xyp. The analysis of mitotic and meiotic cells revealed a high diversity of diploid numbers (2n = 18, 2n = 22, 2n = 26, 2n = 32, 2n = 36, 2n = 40, 2n = 42), and the presence of sex chromosome system of the Xyp type in most species, with the exception of two representatives that exhibited Xyr and XY systems. C-banding showed constitutive heterochromatin predominantly localized in the pericentromeric region of the chromosomes, but differences regarding the number of chromosomes with positive C-bands, intensity of the blocks, and presence of additional bands in autosomes and/or sex chromosomes were observed among the species investigated. Our data revealed that the karyotype 2n = 16 + Xyp does not occur in all 13 tribes of the Cassidinae characterized cytogenetically, seeming to be only a shared feature among the species of the Cassidini. Variations in the C-band pattern, mainly in closely related species, suggest that the interspecific karyotype diversification occurred as a result of changes in the quantity and distribution of constitutive heterochromatin. The occurrence of the Xyp sex chromosome system in the tribe Mesomphaliini, which showed the highest diversity of simple and multiple systems among the coleopteran as a whole, reinforces the view that derived systems originated by chromosome rearrangements involving the Xyp ancestral system., Amália T. Lopes, Flávia R. Fernandes, Marielle C. Schneider., and Obsahuje bibliografii
Growth and development rates in many insects are affected by photoperiod, which enables insects to synchronize their life histories with seasonal events, but this aspect of insect photoperiodism remains understudied. Here we use several experimental combinations of constant day length and temperature to determine whether there are quantitative developmental responses to photoperiod in the bug Scantius aegyptius and leaf beetle Timarcha tenebricosa. The thermal ecology of these two species is strikingly different: the former is thermophilic and active throughout summer and the latter is spring-active and avoids the hottest time of the year. In accordance with their contrasting natural thermal environments, S. aegyptius survives better and achieves a larger final body mass at the high experimental temperatures, while T. tenebricosa survives better and is heavier at the low experimental temperatures. Despite this polarity, long-day conditions accelerate larval development relative to a short-day photoperiod in both species, and this developmental response is stronger at low temperatures. Our re-visitation of previous literature in light of the new findings indicates that this similarity in photoperiodic response is superficial and that relatively faster development in midsummer is likely to have a different ecological role in summer- and spring-active species. In the former, it may allow completion of an additional generation during the favourable season, whereas in the latter, this acceleration likely ensures that the larval stage, which is vulnerable to heat, is completed before the onset of hot weather., Dmitry Kutcherov, Elena B. Lopatina, Sergei Balashov., and Obsahuje bibliografii
Bolbelasmus (Bolbelasmus) unicornis (Schrank, 1789) (Coleoptera: Geotrupidae) is a rare and threatened beetle distributed mostly in Central, Eastern and Southeast Europe. As a species of special conservation significance it is included in Annexes II and IV of the Habitat Directive of the European Union. Several new records of this species documented using light traps and soil sampling were recently reported in Serbia (the central part of the Balkan Peninsula). In this paper we present and discuss the current distribution of this species in the region studied based on GIS occurrence data. The distribution is mapped and values of environmental variables within this beetle's range are quantified using GIS technology. In addition, we predict its potential range in Serbia using a model based on the current distribution of this beetle, environmental variables and distribution of its food source.
Dinocampus coccinellae is a parasitoid wasp usually parasitizing ladybird beetles of the tribe Coccinellini. A field survey conducted between March and November 2016 revealed three hosts of this parasitoid in the Srinagar district of the Indian state of Jammu and Kashmir: two members of the Coccinellini (Oenopia conglobata and Coccinella undecimpunctata) and one of the Chilocorini (Priscibrumus uropygialis). Proportion of the latter (atypical) host that were parasitized was 0.09 and intermediate between that recorded for C. undecimpunctata (0.06) and O. conglobata (0.14). A series of laboratory experiments revealed that while a member of Coccinellini (O. conglobata) was more often attacked by D. coccinellae than a member of Chilocorini (P. uropygialis), the proportions of each species from which parasitoids emerged did not differ significantly. There were no significant differences between D. coccinellae females bred from O. conglobata and P. uropygialis, with respect to selection of the two host species and their suitability for the development of the parasitoid. However, members of the Chilocorini other than P. uropygialis (Chilocorus infernalis and Simmondsius pakistanensis) were rarely attacked by D. coccinellae and parasitoid larvae did not emerge from any of those attacked. The results of our experiments indicate that in Kashmir Himalayas D. coccinellae is adapted to parasitize hosts belonging to both Coccinellini and Chilocorini., Amir Maqbool, Imtiaz Ahmed, Piotr Kiełtyk, Piotr Ceryngier., and Obsahuje bibliografii