Classical biological control is an important means of managing the increasing threat of invasive plants. It constitutes the introduction of natural enemies from the native range of the target plant into the invaded area. This method may be the only cost-effective solution to control the rapidly expanding common ragweed, Ambrosia artemisiifolia, in non-crop habitats in Europe. Therefore, candidate biocontrol agents urgently need to be assessed for their suitability for ragweed control in Europe. A previous literature review prioritized the host-specific leaf beetle Ophraella slobodkini as a candidate agent for ragweed control in Europe, whereas it rejected its oligophagous congener O. communa. Meanwhile, O. communa was accidentally introduced and became established south of the European Alps, and we show here that it is expanding its European range. We then present a short version of the traditional pre-release risk-benefit assessment for these two candidate agents to facilitate fast decision-making about further research efforts. We selected two complementary tests that can be conducted relatively rapidly and inform about essential risks and benefits. We conducted a comparative no-choice juvenile performance assay using leaves of ragweed and sunflower, the most important non-target plant, in Petri dishes in climatic conditions similar to that in the current European range of O. communa. This informs on the fundamental host range and potential for increasing abundance on these host plants. The results confirm that O. slobodkini does not survive on, and is hence unlikely to cause severe damage to sunflower, while O. communa can survive but develops more slowly on sunflower than on ragweed. In parallel, our species distribution models predict no suitable area for the establishment of O. slobodkini in Europe, while O. communa is likely to expand its current range to include a maximum of 18% of the European ragweed distribution. Based on this early assessment, the prioritization and further assessment of O. slobodkini seem unwarranted whereas the results urgently advocate further risk-benefit analysis of O. communa. Having revealed that most of the European area colonized by ragweed is unlikely to be suitable for these species of Ophraella we suggest the use of such relatively short and cheap preliminary assessment to prioritise other candidate agents or strains for these areas., Suzanne T. E. Lommen, Emilien F. Jolidon, Yan Sun, José I. Bustamante Eduardo, Heinz Müller-Schärer., and Obsahuje bibliografii
Heracleum mantegazzianum is one of the most invasive species in the Czech flora. The present study describes its flowering phenology and assess the effectiveness of protandry in preventing selfing in this self-compatible species, describes the timing of flowering in a heavily invaded area of Slavkovský les (Czech Republic) and estimates fruit set in a large sample of plants, which provides reliable data on the often exaggerated fecundity of this species. The study of flowering phenology revealed that protandry is always effective only within individual flowers, where male and female flowering phases are completely separated. In contrast, anther dehiscence in some flowers can occasionally overlap with stigma receptivity in other flowers in the same umbel, providing an opportunity for geitonogamous (i.e. between-flower) selfing. Nevertheless, the potential for selfing in H. mantegazzianum is determined mainly by an overlap in the male and female flowering phases between umbels on the same plant; at least a short overlap between some umbels was observed in 99% of the plants at the Slavkovský les. Although the degree of protandry in H. mantegazzianum favours outcrossing, the opportunity to self may be of crucial importance for an invasive plant, especially if a single plant colonizes a new location. At Slavkovský les, flowering started within one week (from 20 to 27 June 2002) at all 10 sites. The duration of flowering of an individual plantwas on average 36 days,with maximum of 60 days, and increased significantly with the number of umbels on a plant. In the second half of August, the majority of the fruits were ripe and had started to be shed. The beginning of flowering of a plant was significantly negatively correlated with the number of umbels it had – the earlier a plant started to flower the more umbels it had produced. A significant negative relationship was also found between basal diameter and beginning of flowering; plants with large basal diameters started to flower earlier. An average plant at Slavkovský les produced 20,671 fruits. Of these, 44.6% were produced by the terminal umbel, 29.3% by secondary umbels on satellites, 22.6% by secondary umbels on branches and only 3.5% by tertiary umbels. The estimated fruit number of the most fecund plant was 46,470 – compared to an average plant, the proportional contribution of tertiary umbels increased relative to the primary umbel. This study revealed a significant positive relationship between fecundity and plant basal diameter. Although the results of this study indicate that the fecundity of this species is often overestimated in the literature, the number of fruits produced by H. mantegazzianum provides this invasive species with an enormous reproductive capacity.