We present the results of the first study on the karyotypes of four European species of Roncus: Roncus alpinus L. Koch, 1873, Roncus lubricus L. Koch, 1873, Roncus transsilvanicus Beier, 1928 and Roncus sp. The diploid number was 2n = 23 in Roncus sp., 2n = 43 in R. alpinus and R. transsilvanicus and 2n = 45 in R. lubricus. Telocentric autosomes predominate in species with a high chromosome number and metacentric autosomes in Roncus sp. We assume that the ancestral situation for this genus is a high number of chromosomes. A low number of chromosomes is very likely a consequence of centric fusions, which have possibly played a very important role in karyotype evolution in the genus Roncus. All the species analyzed have the X0 sex chromosome system. The X chromosome is metacentric and is the smallest element in the karyotypes of all the species analyzed., František Šťáhlavský, Jana Christophoryova, Hans Henderickx., and Obsahuje seznam literatury
The karyotypes of pseudoscorpions of three families, Geogarypidae, Garypinidae and Olpiidae (Arachnida: Pseudoscorpiones), were studied for the first time. Three species of the genus Geogarypus from the family Geogarypidae and 10 species belonging to 8 genera from the family Olpiidae were studied. In the genus Geogarypus the diploid chromosome numbers of males range from 15 to 23. In the family Olpiidae the male chromosome numbers vary greatly, from 7 to 23. The male karyotype of single studied member of the family Garypinidae, Garypinus dimidiatus, is composed of 33 chromosomes. It is proposed that the karyotype evolution of the families Geogarypidae and Olpiidae was characterised by a substantial decrease of chromosome numbers. The diploid numbers of some olpiids are the lowest known 2n within pseudoscorpions and even one of the lowest within the class Arachnida. In spite of a considerable reduction of diploid numbers, all species studied possess a X0 sex chromosome system that is widespread and probably ancestral in pseudoscorpions. Moreover, X chromosomes retain conservative metacentric morphology in the majority of species. During the first meiotic division of males, a high number of chiasmata were observed in some species, up to five per bivalent in Indolpium sp. The transient stage between pachytene and diplotene is typically characterised by extensive decondensation of chromatin in males of geogarypids and in Calocheiridius libanoticus, and we interpret this as a diffuse stage. This is recorded in pseudoscorpions for the first time. The relationships between some species belonging to the family Olpiidae are discussed based on the data obtained.
An analysis of testicular morphology and spermatogenesis in the Heteroptera species Antiteuchus tripterus (Pentatomidae) revealed that these traits differ from that recorded for other species of the same family. The testes of A. tripterus have only six lobes, while other species of the same family typically have seven lobes, including a compound lobe, i.e., a lobe containing another in its lumen. A study of meiosis and sperm structure in the different lobes of A. tripterus revealed a conventional meiosis in the lobes numbered one to three. In lobe four, however, prophase I spermatocytes exhibit the morphological characteristics of the so called "diffuse" stage and are larger than those in lobes 1-3 in this and the remaining phases of meiosis. Thus, the resulting spermatids are not only larger but also their head is morphologically different. Lobe 5 exhibits characteristics known from other Pentatomidae species such as an uneven distribution of chromatin to the daughter cells, which give rise to cells of different sizes. This lobe forms spermatozoa of different sizes. Lobe 6, contained within lobe 5, differs from it by having larger cells at a stage similar to the so called "diffuse" and spermatid tails with cross divisions, which are not found in other lobes and unreported in the literature.
The molecular karyotype of Paranosema grylli Sokolova, Seleznev, Dolgikh et Issi, 1994, a monomorphic diplokaryotic microsporidium, comprises numerous bright and faint bands of nonstoichiometric staining intensity. Restriction analysis of chromosomal DNAs by ''karyotype and restriction display'' 2-D PFGE has demonstrated that the complexity of molecular karyotype of P. grylli is related to the pronounced length polymorphism of homologous chromosomes. The background of this phenomenon is discussed in the context of ploidy state, reproductive strategy and population structure in this microsporidium. We propose that the remarkable size variation between homologous chromosomes in P. grylli may be a consequence of ectopic recombination at the chromosome extremities.
a1_There are few studies on the morphology and meiosis in the testicles of Heteroptera, but are extremely important, especially for the family Pentatomidae, because in some species in this family meiosis in the testicular lobes results in the production of non-fertile spermatozoa. With the aim of improving the level of understanding of this phenomenon the morphology of the testes and spermatogenesis in 10 species of Pentatomidae were recorded and compared. All of them have testes covered by a pigmented peritoneal sheath. In some species the internal membrane or just inside the peritoneal sheath is pigmented. The pigmentation of both membranes varied. The pigmentation of both was either yellow, or the internal membrane was yellowish and the external one reddish. When the membrane is pigmented, the colour is red or yellow. The number of lobes varied from 3 to 7, with intermediate numbers of 4 and 6. The size and diameter of the lobes are similar in all the species studied, except Proxys albopunculatus, in which the diameter of the third and fifth is smaller than that of the other lobes. The behaviour of the cells during spermatogenesis was the same in all lobes of most species, except in P. albopunctulatus, in which the harlequin lobe is absent and the cells in lobes 4 and 6 exhibited characteristics different from those of cells in lobes 1-3 and 5. Chlorocoris complanatus and Loxa deducta (both Pentatominae) have a harlequin lobe (lobe 5). The chromosome complements recorded were: 2n = 12 (10A + XY) in Dichelops melacanthus and Edessa collaris, 2n = 14 (12A + XY) in C. complanatus, Edessa meditabunda, Ladeaschistus sp., Loxa deducta, P. albopunctulatus, Piezodorus guildinii and Thyanta perditor and 2n = 16 (14A + XY) in Edessa affinis. Thus, this study extends the knowledge of characteristics, such as the pigmentation of the peritoneal sheath, number of testicular lobes, the occurrence of meiotic cells in some, a2_testicular lobes, and the chromosome complements of the family Pentatomidae., and Hederson Vinícius De Souza, Aline Sumitani Murakami, Juliana De Moura, Elisângela Cristiane De Almeida, Inaiá Fernandes Gallego Marques, Mary Massumi Itoyama.
In the present work, we have characterized the chromosomes of 13 Cassidinae beetles, belonging to four tribes, the broad aim being to increase the cytogenetic data and establish the mechanisms involved in chromosome evolution of this subfamily, which appear to be conserved karyotypically, i.e. 2n = 16 + Xyp. The analysis of mitotic and meiotic cells revealed a high diversity of diploid numbers (2n = 18, 2n = 22, 2n = 26, 2n = 32, 2n = 36, 2n = 40, 2n = 42), and the presence of sex chromosome system of the Xyp type in most species, with the exception of two representatives that exhibited Xyr and XY systems. C-banding showed constitutive heterochromatin predominantly localized in the pericentromeric region of the chromosomes, but differences regarding the number of chromosomes with positive C-bands, intensity of the blocks, and presence of additional bands in autosomes and/or sex chromosomes were observed among the species investigated. Our data revealed that the karyotype 2n = 16 + Xyp does not occur in all 13 tribes of the Cassidinae characterized cytogenetically, seeming to be only a shared feature among the species of the Cassidini. Variations in the C-band pattern, mainly in closely related species, suggest that the interspecific karyotype diversification occurred as a result of changes in the quantity and distribution of constitutive heterochromatin. The occurrence of the Xyp sex chromosome system in the tribe Mesomphaliini, which showed the highest diversity of simple and multiple systems among the coleopteran as a whole, reinforces the view that derived systems originated by chromosome rearrangements involving the Xyp ancestral system., Amália T. Lopes, Flávia R. Fernandes, Marielle C. Schneider., and Obsahuje bibliografii
The aim of this study was to characterize karyotypes of central European spiders of the genera Arctosa, Tricca, and Xerolycosa (Lycosidae) with respect to the diploid chromosome number, chromosome morphology, and sex chromosomes. Karyotype data are reported for eleven species, six of them for the first time. For selected species the pattern in the distributions of the constitutive heterochromatin and the nucleolar organizer regions (NORs) was determined. The silver staining technique for detecting NORs of lycosid spiders was standardized. The male karyotype consisted of 2n = 28 (Arctosa and Tricca) or 2n = 22 (Xerolycosa) acrocentric chromosomes. The sex chromosome system was X1X20 in all species. The sex chromosomes of T. lutetiana and X. nemoralis showed unusual behaviour during late diplotene, namely temporary extension due to decondensation. C-banding technique revealed a small amount of constitutive heterochromatin at the centromeric region of the chromosomes. Two pairs of autosomes bore terminal NORs. Differences in karyotypes among Arctosa species indicate that the evolution of the karyotype in this genus involved autosome translocations and size changes in the sex chromosomes. Based on published results and those recorded in this study it is suggested that the ancestral male karyotype of the superfamily Lycosoidea consisted of 28 acrocentric chromosomes. and Petr DOLEJŠ, Tereza KOŘÍNKOVÁ, Jana MUSILOVÁ, Věra OPATOVÁ, Lenka KUBCOVÁ, Jan BUCHAR, Jiří KRÁL.
In Mormidea paupercula (n = 6 + XY in males), the presence of a CMA3-bright band in the telomeric regions on both sex chromosomes allowed the analysis of the kinetic activity of the sex univalents and XY pseudobivalent at the first and second meiotic divisions, respectively. The separation of the sister chromatids of the sex chromosomes occurs from a pair of telomeric regions (with or without a band), with opposite telomeric regions remaining associated with each other at meiosis I; the behaviour of both sex chromosomes differs, on the X chromosome both telomeric regions are similarly active, while on the Y chromosome the telomeric region without a band is more frequently active. At the second division, the most frequent associations in the pseudobivalent occur between the telomeric regions of both sex chromosomes with bands or without bands. Therefore, in both meiotic divisions, the same telomeric region on the sex chromosomes could lead the migration, in contrast to that observed usually in autosomal bivalents. These results provide evidence that the sex chromosomes of Heteroptera show more than one pattern of attachment to the spindle.
Species of Pentatomidae are cytogenetically characterized by the presence of holokinetic chromosomes, a pre-reductional type of meiosis, and a great constancy not only in chromosome number (2n = 14 in 85% of the 250 species analyzed) but also in the sex chromosome determining system (XY/XX).
Edessa meditabunda and E. rufomarginata males have 2n = 14 = 12 + XY, and both species present small telomeric positively heteropycnotic bands which are DAPI and CMA bright. In E. meditabunda the NOR region is clearly revealed at the telomeric region of the largest autosomal pair by silver staining and CMA banding. Meiotic behaviour of both species follows the general pattern of the order: autosomes divide pre-reductionally, sex chromosomes are achiasmatic and divide postreductionally, and at both metaphase plates the autosomes become arranged in a circle with the sex chromosomes lying at its center. In E. meditabunda, however, the larger sex chromosome is generally observed at metaphase I forming part of the ring of autosomal bivalents. Bivalents with two chiasmata are frequently observed in E. meditabunda and E. rufomarginata; mean chiasma frequency (6.45 and 6.26, respectively) differ significantly between both species, but differences between populations within each species are not significant.
The metaphase plate arrangement of autosomes and sex chromosomes is rather constant in Heteroptera. However, our results in E. meditabunda together with previous reports in other species of the order led us to suggest that the metaphase plate arrangement is more liable to variation at the first meiotic division than at the second one, when it is almost constant. The presence of ring bivalents in both species here analyzed constitutes further evidence against the previous statement of only one chiasma per bivalent in Heteroptera.
Monoclonal cultures of the aerophytic cave diatom Luticola dismutica were studied and its frustule morphology, cytology and reproduction recorded. Luticola dismutica is a laterally asymmetrical, monoplastidic pennate diatom with imposed chloroplast division and nuclear behaviour of type 1.A sensu Mann & Stickle. Clones of L. dismutica decreased in cell size in culture until they have reached the sexual size range. Homothallic sexual reproduction and auxosporulation (type IB1a auxosporulation sensu Geitler) were induced in four sexualized clones. Gametangia paired via the girdle, two isogametes were formed per gametangium and hence two zygotes were produced per pair of gametangia. No surviving superfluous nuclei were observed in the gamete and zygote stages and no unfused haploid nuclei were seen in the auxospore stage; zygotes and expanded auxospores had only one nucleus. Auxospores expanded perpendicular to the apical axis of gametangia. Expanded auxospores and initial cells had a swollen central part, the linear-lanceolate outline shape of the vegetative valves was restored during the first divisions of the post-initial cells. Initial cells left the perizonium by a route unique to pennate diatoms, through a transverse rupture of the perizonium. The key cytological and reproductive characteristics reviewed in this paper indicate, that Luticola is more closely related to Placoneis and Dickieia, than to Navicula sensu stricto.