We investigated the variation in body colour and its thermoregulatory function in Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae), a parasitoid wasp of Spodoptera and other free-living lepidopteran larvae. We show that the body colour of adult wasps darkens when cocoons are kept at low temperatures. The range in the variation in colour, however, differs for different parts of the body and among uniparental (thelytokous) strains. This melanism enables these wasps to attain a body temperature in sunshine up to 2°C. Moreover, this small gain in body temperature can markedly increase the flight activity of wasps at low ambient temperatures. We conclude that the variation in body colour that resulted from rearing the cocoons at different temperatures enable the wasps to adapt to changing thermal environments. The ecological significance of the difference in the degree of melanism of the different strains is discussed., Yosuke Abe, Takuma Nishimura, Kaoru Maeto., and Seznam literatury
Growth and development rates in many insects are affected by photoperiod, which enables insects to synchronize their life histories with seasonal events, but this aspect of insect photoperiodism remains understudied. Here we use several experimental combinations of constant day length and temperature to determine whether there are quantitative developmental responses to photoperiod in the bug Scantius aegyptius and leaf beetle Timarcha tenebricosa. The thermal ecology of these two species is strikingly different: the former is thermophilic and active throughout summer and the latter is spring-active and avoids the hottest time of the year. In accordance with their contrasting natural thermal environments, S. aegyptius survives better and achieves a larger final body mass at the high experimental temperatures, while T. tenebricosa survives better and is heavier at the low experimental temperatures. Despite this polarity, long-day conditions accelerate larval development relative to a short-day photoperiod in both species, and this developmental response is stronger at low temperatures. Our re-visitation of previous literature in light of the new findings indicates that this similarity in photoperiodic response is superficial and that relatively faster development in midsummer is likely to have a different ecological role in summer- and spring-active species. In the former, it may allow completion of an additional generation during the favourable season, whereas in the latter, this acceleration likely ensures that the larval stage, which is vulnerable to heat, is completed before the onset of hot weather., Dmitry Kutcherov, Elena B. Lopatina, Sergei Balashov., and Obsahuje bibliografii
Although the effects of host plant quality on the performance of polyphagous herbivores are largely uniform across insect taxa, there are various exceptions to this rule. In particular, there are scattered reports of cases in which the relative quality of different hosts differs among larval instars of a single insect species. Such cases are explained either in terms of differences in the susceptibility of different aged larvae to plant defences or, alternatively, age-specific nutritional demands. Here we report the results of experiments that show that young larvae of the polyphagous common heath moth Ematurga atomaria (Lepidoptera: Geometridae) consistently attain higher weights on common heather Calluna vulgaris than bilberry Vaccinium myrtillus, whereas the rank order of these host plants is reversed in the final larval instar. Phytochemical analyses showed that differences in nutrient content of these plants are not likely to explain the observed pattern. Instead, the results are more consistent with the idea that the greater chemical defence of bilberry has a relatively stronger influence on young than old larvae., Helen Vellau, Siiri-Lii Sandre, Toomas Tammaru., and Seznam literatury
The theory of life history evolution generally predicts a negative across-environment correlation between development time and size at maturity in response to variations in environmental quality. Deviations from this pattern occur under specific circumstances. In particular, organisms may mature both early and at a small size when (1) some ultimate change (e.g. time constraint, resource exhaustion) in the environment precludes further growth, or (2) when there are predictable among-environment differences in mortality rates. The first scenario is frequently documented in insects but evidence for the second possibility is scarce. Here we report a crowding-induced plastic response resulting in a clear positive across-environment correlation between final weight and development time in a geometrid moth. The response was apparent during the entire larval period and in the last larval instar. Crowding also led to increased growth rates. As outbreaks have not been reported for this species it is unlikely that early pupation is a response to anticipated food shortage. Instead, we suggest that crowded larvae may perceive a higher risk of predation, perhaps because they are unable to distinguish conspecifics from potential predators. A possibility for a plastic increase in growth rate implies that the uncrowded larvae grow at submaximal rates, which indicates a cost of high growth rate., Helen Vellau, Toomas Tammaru., and Obsahuje seznam literatury
Colonies of M. rubra, M. ruginodis and M. scabrinodis were collected in four geographic regions: Kiev, Ukraine (50.5°N, 30.5°E - first two species), Vladimir, Russia (56.2°N, 40.4°E - only last species), St. Petersburg, Russia (59.3°N, 30.3°E - all three species) and Chupa, Murmansk prov., Russia (66.3°N, 33.7°E - last two species). After artificial overwintering experimental cultures consisting of 150 workers and one queen were established and kept at 16, 18, 20, 22, 24 and 26°C under long (22 h) day lengths. The workers reared eggs laid by queens into rapid (non-diapause) brood pupae and diapause larvae, which were removed and counted. The results showed the distinct latitudinal variation in the temperature effects on rapid brood rearing and in the thermal requirements for development. First, the period during which new rapid brood pupae appeared was found to be longer and the total number of pupae produced to be greater in ants from more southern populations. The number of diapause larvae reared by ant cultures was also usually greater, in ants from southern sites. Second, low temperatures reduced the period of rapid brood production and the number of pupae reared to a greater degree in ants from northern populations. It means that northern Myrmica colonies rear rapid brood under lower temperatures evidently worse in comparison with ants from southern regions. Third, eggs and larvae from more northern sites appeared to develop faster than southern brood at temperatures above 16-18°C. This was because brood development in northern populations was more temperature dependent, i.e. characterised by higher slopes of regression lines of development rate on temperature. The sum of effective temperatures decreased with the advance to North. The higher slopes were always associated with higher thermal thresholds for development. We conclude that the reaction norm of Myrmica colonies, in response to temperature, changes according to the local climate in such a way that brood rearing, growth and development of individuals become more temperature dependent in more severe environments with colder and shorter summers. This lead to the increase of the physiological and developmental responses at higher temperatures at the expense of a decrease within lower temperature range. In fact Myrmica colonies from northern populations need on average higher temperatures in their nests for successful production of new adults as compared to southern ants.