Convergent photoperiodic plasticity in developmental rate in two species of insects with widely different thermal phenotypes
- Title:
- Convergent photoperiodic plasticity in developmental rate in two species of insects with widely different thermal phenotypes
- Creator:
- Kutcherov, Dmitry, Lopatina, Elena B, and Balashov, Sergei
- Identifier:
- https://cdk.lib.cas.cz/client/handle/uuid:11a9826c-6640-428d-89a8-239d2a8c90f0
uuid:11a9826c-6640-428d-89a8-239d2a8c90f0
issn:1210-5759
doi:10.14411/eje.2018.060 - Subject:
- polokřídlí, brouci, mandelinkovití, fotoperiodismus, teplota, Hemiptera, beetles, Chrysomelidae, photoperiodism, temperature, Pyrrhocoridae, Scantius aegyptius, Coleoptera, Timarcha tenebricosa, body size, development, reaction norm, seasonality, 2, and 59
- Type:
- model:article and TEXT
- Format:
- print, počítač, and online zdroj
- Description:
- Growth and development rates in many insects are affected by photoperiod, which enables insects to synchronize their life histories with seasonal events, but this aspect of insect photoperiodism remains understudied. Here we use several experimental combinations of constant day length and temperature to determine whether there are quantitative developmental responses to photoperiod in the bug Scantius aegyptius and leaf beetle Timarcha tenebricosa. The thermal ecology of these two species is strikingly different: the former is thermophilic and active throughout summer and the latter is spring-active and avoids the hottest time of the year. In accordance with their contrasting natural thermal environments, S. aegyptius survives better and achieves a larger final body mass at the high experimental temperatures, while T. tenebricosa survives better and is heavier at the low experimental temperatures. Despite this polarity, long-day conditions accelerate larval development relative to a short-day photoperiod in both species, and this developmental response is stronger at low temperatures. Our re-visitation of previous literature in light of the new findings indicates that this similarity in photoperiodic response is superficial and that relatively faster development in midsummer is likely to have a different ecological role in summer- and spring-active species. In the former, it may allow completion of an additional generation during the favourable season, whereas in the latter, this acceleration likely ensures that the larval stage, which is vulnerable to heat, is completed before the onset of hot weather., Dmitry Kutcherov, Elena B. Lopatina, Sergei Balashov., and Obsahuje bibliografii
- Language:
- English
- Rights:
- http://creativecommons.org/publicdomain/mark/1.0/
policy:public - Source:
- European Journal of Entomology | 2018 Volume:115 | Number:1
- Harvested from:
- CDK
- Metadata only:
- false
The item or associated files might be "in copyright"; review the provided rights metadata:
- http://creativecommons.org/publicdomain/mark/1.0/
- policy:public