In previous studies, it has been shown that recombinant human neuregulin-1(rhNRG-1) is capable of improving the survival rate in animal models of doxorubicin (DOX)-induced cardiomyopathy; however, the underlying mechanism of this phenomenon remains unknown. In this study, the role of rhNRG-1 in attenuating doxorubicin-induce apoptosis is confirmed. Neonatal rat ventricular myocytes (NRVMs) were subjected to various treatments, in order to both induce apoptosis and determine the effects of rhNRG-1 on the process. Activation of apoptosis was determined by observing increases in the protein levels of classic apoptosis markers (including cleaved caspase-3, cytochrome c, Bcl-2, BAX and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining). The activation of Akt was detected by means of western blot analysis. The study results showed that doxorubicin increased the number of TUNEL positive cells, as well as the protein levels of cleaved caspase-3 and cytochrome c, and reduced the ratio of Bcl-2/Bax. However, all of these effects were markedly antagonized by pretreament with rhNRG-1. It was then further demonstrated that the effects of rhNRG-1 could be blocked by the phosphoinositole-3-kinase inhibitor LY294002, indicating the involvement of the Akt process in mediating the process. RhNRG-1 is a potent inhibitor of doxorubicin-induced apoptosis, which acts through the PI3K-Akt pathway. RhNRG-1 is a novel therapeutic drug which may be effective in preventing further damage from occurring in DOX-induced damaged myocardium., T. An, ... [et al.]., and Obsahuje seznam literatury
Increased phosphorylation of Akt substrate of 160 kDa (AS160) is essential to trigger the full increase in insulin-stimulated glucose transport in skeletal muscle. The primary aim of this study was to characterize the time course for reversal of insulin-stimulated AS160 phosphorylation in rat skeletal muscle after insulin removal. The time courses for reversal of insulin effects both upstream (Akt phosphorylation) and downstream (glucose uptake) of AS160 were also determined. Epitrochlearis muscles were incubated in vitro using three protocols which differed with regard to insulin exposure: No Insulin (never exposed to insulin), Transient Insulin (30 min with 1.8 nmol/l insulin, then incubation without insulin for 10, 20 or 40 min), or Sustained Insulin (continuously incubated with 1.8 nmol/l insulin). After removal of muscles from insulin, Akt and AS160 phosphorylation reversed rapidly, each with a half-time of <10 min and essentially full reversal by 20 min. Glucose uptake reversed more slowly (half time between 10 and 20 min with essentially full reversal by 40 min). Removal of muscles from insulin resulted in a rapid reversal of the increase in AS160 phosphorylation which preceded the reversal of the increase in glucose uptake, consistent with AS160 phosphorylation being essential for maintenance of insulin-stimulated glucose uptake., N. Sharma, E. B. Arias, G. D. Cartee., and Obsahuje bibliografii a bibliografické odkazy