Spontaneous activity of cortical neurons exhibits alternative fluctuations of membrane potential consisting of phased depolarization called "up-state" and persistent hyperpolarization called "down-state" during slow wave sleep and anesthesia. Here, we examined the effects of sound stimuli (noise bursts) on neuronal activity by intracellular recording in vivo from the rat auditory cortex (AC). Noise bursts increased the average time in the up-state by 0.81±0.65 s (rang e, 0.27-1.74 s) related to a 10 s recording duration. The rise times of the spontaneous up-events averaged 69.41±18.04 ms (range, 40.10-119.21 ms), while those of the sound-evoked up-events were significantly shorter (p<0.001) averaging on ly 22.54±8.81 ms (range, 9.31- 45.74 ms). Sound stimulation did not influence ongoing spontaneous up-events. Our data suggest that a sound stimulus does not interfere with ongoing spontaneous neuronal activity in auditory cortex but can evoke new depolarizations in addition to the spontaneous ones., Y. Zhang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
A theory of spectra and excitation dynamics in antenna based on the notion of exciton interactions in the cyclic structures of light-harvesting pigments is reported. The theory provides an explanation for the picosecond absorbance difference spectra, the induced absorption anisotropy decay, the anomalously high bleaching valné, as well as for the fluorescence spectra, kinetics and depolarizatio