We studied how the reductions of trienoic fatty acids (TAs) and increases of dienoic fatty acids (DAs) enhanced high-temperature tolerance in antisense expression of tomato chloroplast omega-3 fatty acid desaturase gene (LeFAD7) transgenic tomato (Lycopersicon esculentum Mill.) plants. In transgenic plants, the content of linolenic acid (18:3) was markedly decreased, while linoleic acid (18:2) was increased correspondingly and the similar changes were observed under high-temperature stress as well. Under high-temperature stress, transgenic plants can maintain a relatively higher level of net photosynthetic rate (P N) and chlorophyll (Chl) content than that of wild type (WT) plants. A decreased Chl/Carotenoids (xanthophylls and carotenes, Car) ratio and Chl a/b ratio were observed in transgenic plants. Transgenic plants exhibited visible decrease in the relative electrolyte conductivity, higher activities of antioxidative enzymes and lower reactive oxygen species correspondingly than WT. In addition, high-temperature stress for 24 h caused more extensive changes of chloroplast ultrastructure in WT than in transgenic plants. We therefore suggested that the enhancement of high-temperature tolerance in antisense expression of LeFAD7 transgenic plants might be raised from the reduction of TAs and increase of DAs subsequently leading to series of physiological alterations. and X. Liu ... [et al.].
A tomato (Lycopersicon esculentum Mill.) zeaxanthin epoxidase gene (LeZE) was isolated and antisense transgenic tomato plants were produced. Northern, southern, and western blot analyses demonstrated that antisense LeZE was transferred into the tomato genome and the expression of LeZE was inhibited. The ratio of (A+Z)/(V+A+Z) in antisense transgenic plants was maintained at a higher level than in the wild type (WT) plants under high light and chilling stress with low irradiance. The value of non-photochemical quenching (NPQ) in WT and transgenic plants was not affected during the stresses. The oxidizable P700 and the maximal photochemical efficiency of PSII (Fv/Fm) in transgenic plants decreased more slowly at chilling temperature under low irradiance. These results suggested that suppression of LeZE caused zeaxanthin accumulation, which was helpful in alleviating photoinhibition of PSI and PSII in tomato plants under chilling stress. and N. Wang ... [et al.].
Alkaline stress is important abiotic stress that restricts the growth and physiological activity of sorghum (Sorghum bicolor L. Moench). We aimed to investigate the effects of alkaline stress on alkali-tolerant SX44B and alkali-sensitive 262B sorghum inbred lines. The results showed that alkaline stress decreased the content of chlorophyll, activity of photosystem II, net photosynthetic rate, and destroyed chloroplast morphology. These changes were less pronounced in SX44B, possibly owing to its higher antioxidant enzyme activity and nonphotochemical quenching. Alkaline stress decreased water content, transpiration rate, and stomatal conductance while increasing the leaf temperature, with the effect being more pronounced in 262B. A significant correlation was observed between leaf-air temperature difference (ΔT) and relative water content and gas-exchange parameters, especially in 262B. Therefore, ΔT is an effective indicator for monitoring changes in sorghum leaves under alkaline stress and evaluating the alkali tolerance of different sorghum germplasm.
We studied how tomato (Lycopersicon esculentum Mill.) chloroplast omega-3 fatty acid desaturase gene (Lefad7) overexpression enhanced low-temperature (LT) tolerance in transgenic tomato plants. In these plants, the content of linolenic acid (18:3) markedly increased and, correspondingly, the content of linoleic acid (18:2) decreased. Similar changes were found after 6 h under LT (4°C) treatment. Under LT stress, wild type (WT) tomato plants showed a much greater increase in relative electrolyte leakage and malondialdehyde (MDA) contents compared with transgenic plants. Transgenic plants exhibited higher activities of antioxidative enzymes and a lower content of reactive oxygen species (ROS). Transgenic plants maintained a relatively higher level of the net photosynthetic rate (PN) and chlorophyll (Chl) content than WT plants under LT stress. Taken together, we suggested that overexpression of Lefad7 enhanced LT tolerance by changing the composition of membrane lipids in tomato plants, with the increased content of trienoic fatty acids and reduced content of dienoic fatty acids that led to series of physiological alterations., X. Y. Liu ... [et al.]., and Obsahuje bibliografii
In transgenic (TG) tomato (Lycopersicon esculentum Mill.) overexpressed ω-3 fatty acid desaturase gene (LeFAD7) was identified, which was controlled by the cauliflower mosaic virus 35S promoter and induced increased contents of unsaturated fatty acids in thylakoid membrane. Under chilling stress at low irradiance (4 °C, 100 µmol m-2 s-1) TG plants with higher linolenic acids (18: 3) content maintained a higher O2 evolution rate, oxidizable P700 content, and maximal photochemical efficiency (Fv/Fm) than wild type (WT) plants. Low temperature treatment for 6 h resulted in extensive changes of chloroplast ultrastructure: in WT plants most chloroplasts became circular, the number of amyloids increased, appressed granum stacks were dissolved, grana disappeared, and the number of grana decreased, while only a few grana were found in leaves of TG plants. Hence the overexpression of LeFAD7 could increase the content of
18 : 3 in thylakoid membrane, and this increase alleviated the photoinhibition of photosystem (PS) 1 and PS2 under chilling at low irradiance. and X.-Y. Liu ... [et al.].
Photoinhibition is a significant constraint for improvement of radiation-use efficiency and yield potential in cereal crops. In this work, attached fully expanded leaves of seedlings were used to assay the factors determining photoinhibition and for evaluation of tolerance to photoinhibition in wheat (Triticum aestivum L.). Our results showed that even 1 h under PPFD of 600 µmol(photon) m-2 s-1 could significantly reduce maximal quantum yield of PSII photochemistry (Fv/Fm) and performance index (PI) compared to low light [300 µmol(photon) m-2 s-1]. The decrease of Fv/Fm and PI was more noticeable with the increase of light intensity; irradiance higher than 800 µmol(photon) m-2 s-1 resulted in photoinhibition. Compared to 25°C, lower (20°C) or higher temperature (≥ 35°C) aggravated photoinhibition, while slightly high temperature (28°) alleviated photoinhibition. At 25°C, irradiance of 1,000 µmol(photon) m-2 s-1 for 1 h was enough to cause photoinhibition and a significant decrease of Fv/Fm, PI, trapped energy flux, electron transport flux, and density of reaction center as well as increase of dissipated energy flux per cross section were observed. In addition, seedlings at 21-32 days after planting showed a relatively stable phenotype, while the younger or older seedlings indicated an increased susceptibility to photoinhibition, especially in senescing leaves. Finally, six wheat varieties with relative tolerance to photoinhibition were identified from 22 Chinese winter wheat varieties by exposing attached leaves of the 25-d old seedlings for 1 h to 1,000 µmol(photon) m-2 s-1 at 25°C. Therefore, our work established a possible method for development of new wheat varieties with enhanced tolerance to photoinhibition., H. Li, Q. Zheng, J. Zhang, B. Li, Z. Li., and Obsahuje bibliografii
RNA gel hybridization showed that the expression of monodehydroascorbate reductase (MDHAR) in the wild type (WT) tomato was decreased firstly and then increased under salt- and polyethylene glycol (PEG)-induced osmotic stress, and the maximum level was observed after treatment for 12 h. WT, sense transgenic and antisense transgenic tomato plants were used to analyze the antioxidative ability to cope with osmotic stresses. After salt stress, the fresh mass (FM) and height of sense transgenic lines were greater than those of antisense lines and WT plants. Under salt and PEG treatments, sense transgenic plants showed a lower level of hydrogen peroxide (H2O2) and malondialdehyde (MDA), a higher net photosynthetic rate (PN), and the maximal photochemical efficiency of PSII (Fv/Fm) compared with WT and antisense transgenic plants. Moreover, sense lines maintained higher ascorbate peroxidase (APX) activity than WT and antisense plants under salt- and PEG-induced osmotic stress. These results indicate that chloroplastic MDHAR plays an important role in alleviating photoinhibition of PSII by elevating ascorbate (AsA) level under salt- and PEG-induced osmotic stress., F. Li ... [et al.]., and Obsahuje bibliografii