PSI trimer to monomer ratio in intact cyanobacterial cells and isolated thylakoids was analysed by two noninvasive, in vivo methods; low-temperature fluorescence emission and circular dichroism spectroscopy. We measured fluorescence emission spectra of cells upon chlorophyll (Chl, 436 nm) excitation. All three species - Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120, and Spirulina platensis - showed shifted Chl peak, indicating they have different spectral properties. CD spectroscopy revealed the highest intensity at 515 nm (PSI peak) in Spirulina platensis cells, which may originate from PSI multi-oligomerisation. The most sensitive response to heat treatment in this strain was the oligomerisation of PSI RCs. PSI dimers and tetramers in Anabaena cells showed smaller changes of the CD signal upon the heat treatment compared to that of Synechocystis WT. The lack of γ-linolenic acid affected the filament morphology by the loss of the spiral shape and the PSI monomerisation in Spirulina I22., T. Zakar, L. Kovacs, S. Vajravel, E. Herman, M. Kis, H. Laczko-Dobos, Z. Gombos., and Obsahuje bibliografické odkazy
Low temperature has negative effects on apple photosynthesis by inhibiting the accumulations of photosynthates and nitrogen. The interactive effects of low temperature and nitrogen application on photosynthetic parameters and the absorption and distribution of carbon and nitrogen in different organs were assessed to investigate if nitrogen application can relieve the low-temperature stress on gas exchange and the accumulations of carbon and nitrogen inside the apple plants. No matter under normal or low-temperature conditions, nitrogen application both improved the photosynthetic parameters including net photosynthetic rate, intercellular CO2 concentration, and quantum yield of regulated energy dissipation of PSII as well as the absorption of carbon and nitrogen in roots, stems, and leaves. Thus, we conclude that nitrogen application can relieve the effects of low-temperature stress on photosynthesis and is of benefit for the accumulations of carbon and nitrogen in multiple organs of apple seedlings.
Glycinebetaine, a compatible osmolyte of halotolerant plants and bacteria, partially protected photosystem (PS) 1 and PS2 electron transport reactions against thermal inactivation but with different efficiencies. In its presence, the temperature for half-maximal inactivation (t1/2) was generally shifted downward by 3-12 °C. Glycinebetaine stabilized photoinduced oxygen evolving reactions of PS2 by protecting the tetranuclear Mn cluster and the extrinsic proteins of this complex. A weaker, although noticeable, stabilizing effect was observed in photoinduced PS2 electron transport reactions that did not originate in the oxygen-evolving complex (OEC). This weaker protection by glycinebetaine was probably exerted on the PS2 reaction centre. Glycinebetaine protected also photoinduced electron transport across PS1 against thermal inactivation. The protective effect was exerted on plastocyanin, the mobile protein in the lumen that carries electrons from the integral cytochrome b6f complex to the PS1 complex. and Y. M. Allakhverdieva ... [et al.].
We tested the usefulness of chlorophyll a fluorescence quenching analysis for the selection of maize parental inbred lines able to produce F1 hybrids with a high CO2 assimilation rate during growth at suboptimal temperature. Fifty inbred lines, grown at 15 °C, showed at 6 °C a broad genetic variability regarding the quantum yield of photosynthetic electron transport (ΦPS2). A decrease of ΦPS2 in sensitive lines was caused more by reduction of the efficiency of excitation energy capture by open photosystem 2 (PS2) reaction centres (Fv'/Fm') than by a drop in photochemical quenching (qP). Selected inbred lines with the highest (H) and the lowest (L) values of ΦPS2 were used for separate crossings in a diallelic arrangement. Twenty-one of H×H hybrids and 21 of the L×L hybrids were grown at 15 °C. The H×H hybrids showed at suboptimal temperature a significantly higher transport of photosynthetic electrons than the L×L hybrids at lower (400) as well as at higher [800 μmol(photon) m-2 s-1] irradiance. The mean net photosynthetic rate (PN) in H×H and L×L hybrids amounted to 8.4 and 5.8 (second leaf) and 8.5 and 7.6 μmol(CO2) m-2 s-1 (third leaf), respectively. Among the best 20 hybrids with regard to PN (values larger than the average) of second leaves, as many as 15 were derived from H lines (75 % of hybrids), whereas among the best 21 hybrids with regard to PN of the third leaves, 16 were derived from H lines (76 % of hybrids). The intensive PN of H×H hybrids was most often accompanied by less water lost via transpiration in relation to photosynthesis than in the hybrids of L lines. Hence an analysis of chlorophyll a fluorescence quenching enables the selection of inbred lines, which can produce hybrids with improved CO2 fixation and with efficient water management during growth at suboptimal temperature. and J. Kościelniak, F. Janowiak, Z. Kurczych.