Mesenchymal stem cells (MSCs) have been reported to improve
survival of cardiomyocytes (CMCs) and overall regeneration of
cardiac tissue. Despite promising preclinical results, interactions
of MSCs and CMCs, both direct and indirect, remain unclear. In
this study, porcine bone marrow MSCs and freshly isolated
porcine primary adult CMCs were used for non-contact co-culture
experiments. Morphology, viability and functional parameters of
CMCs were measured over time and compared between CMCs
cultured alone and CMCs co-cultured with MSCs. In non-contact
co-culture, MSCs improved survival of CMCs. CMCs co-cultured
with MSCs maintained CMCs morphology and viability in
significantly higher percentage than CMCs cultured alone. In
viable CMCs, mitochondrial respiration was preserved in both
CMCs cultured alone and in CMCs co-cultured with MSCs.
Comparison of cellular contractility and calcium handling,
measured in single CMCs, revealed no significant differences
between viable CMCs from co-culture and CMCs cultured alone.
In conclusion, non-contact co-culture of porcine MSCs and CMCs
improved survival of CMCs with a sufficient preservation of
functional and mitochondrial parameters.
Patients with obesity and type 2 diabetes often display high levels of the anti-diabetic factor fibroblast growth factor-21 (FGF21), suggesting that the overproduction of FGF21 may result from increased adiposity in an attempt by white adipose tissue (WAT) to counteract insulin resistance. However, the production of FGF21 diabetes in the absence of WAT has not been examined. In this study, we investigated the effects of lipodystrophy in A-ZIP F-1 mice on FGF21 production in relation to diabetes. A-ZIP F-1 mice displayed high FGF21 plasma levels resulting from enhanced FGF21 mRNA expression in the liver. Concomitant enhancement of FGF21 receptor (FGFR1) and glucose transporter 1 (GLUT-1) mRNA expression was observed in the muscles of A-ZIP F-1 mice. Furthermore, the activation of hypothalamic NPY and AgRP mRNA expression positively correlated with plasma levels of FGF21 but not active ghrelin. Our study demonstrates that an increased FGF21 plasma level in lipodystrophic A-ZIP F-1 mice results mainly from up-regulated liver production but does not suffice to overcome the lipodystrophy-induced severe type 2-diabetes and insulin resistance in the liver linked to the augmented liver fat deposition., A. Špolcová, M. Holubová, B. Mikulášková, V. Nagelová, A. Štofková, Z. Lacinová, J. Jurčovičová, M. Haluzík, L. Maletínská, B. Železná., and Obsahuje bibliografii
Ghrelin and agonists of its re ceptor GHS-R1a are potential substances for the treatment of cachexia. In the present study, we investigated the acute and lo ng-term effects of the GHS-R1a agonist JMV 1843 (H-Aib-DTrp-D-gTrp -CHO) on food intake, body weight and metabolic parameters in lean C57BL/6 male mice. Additionally, we examined stability of JMV 1843 in mouse blood serum. A single subcutaneous injection of JMV 1843 (0.01-10 mg/kg) increased food intake in fed mice in a dose- dependent manner, up to 5-times relative to the saline-treated group (ED 50 =1.94 mg/kg at 250 min). JMV 1843 was stable in mouse serum in vitro for 24 h, but was mostly eliminated from mouse blood after 2 h in vivo . Ten days of treatment with JMV 1843 (subcutaneous administration, 10 or 20 mg/kg/day) significantly increased food intake, body weight and mRNA expression of the orexigenic neuropeptide Y and agouti-related peptide in the medial basal hy pothalamus and decreased the expression of uncoupling protein 1 in brown adipose tissue. Our data suggest that JMV 1843 could have possible future uses in the treatment of cachexia., M. Holubová, ... [et al.]., and Obsahuje seznam literatury
Mesenchymal stem cells (MSCs) have been repeatedly shown to be able to repair bone defects. The aim of this study was to characterize the osteog enic differentiation of miniature pig MSCs and markers of this differentiation in vitro . Flow-cytometrically characterized MSCs were seeded on cultivation plastic (collagen I and vitronectin coated/uncoated) or plasma clot (PC)/plasma- alginate clot (PAC) scaffolds and differentiated in osteogenic medium. During three weeks of differentiation, the formation of nodules and deposition of calcium were visualized by Alizarin Red Staining. In addition, the production of alkaline phosphatase (ALP) activity was quantitatively detected by fluorescence. The expression of osteopontin, osteonectin and osteocalcin were assayed by immunohistochemistry and Western Blot analysis. We revealed a decrease of osteopontin expression in 2D and 3D environment during differentiation. The weak initial osteonectin signal, culminating on 7th or 14th day of differentiation, depends on collagen I and vitronectin coating in 2D system. The highest activity of ALP was detected on 21th day of osteogenic differentiation. The PC scaffolds provided better conditions for osteogenic differentiation of MSCs than PAC scaffolds in vitro . We also observed expected effects of collagen I and vitronectin on the acceleration of osteogenic differentiation of miniature pig MSC. Our results indicate similar ability of miniature pig MSCs osteogenic differentiation in 2D and 3D environment, but the expression of osteogenic marker s in scaffolds and ECM coated monolayers started earlier than in the monolayers without ECM., J. Juhásová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy