Mesenchymal stem cells (MSCs) have been repeatedly shown to be able to repair bone defects. The aim of this study was to characterize the osteog enic differentiation of miniature pig MSCs and markers of this differentiation in vitro . Flow-cytometrically characterized MSCs were seeded on cultivation plastic (collagen I and vitronectin coated/uncoated) or plasma clot (PC)/plasma- alginate clot (PAC) scaffolds and differentiated in osteogenic medium. During three weeks of differentiation, the formation of nodules and deposition of calcium were visualized by Alizarin Red Staining. In addition, the production of alkaline phosphatase (ALP) activity was quantitatively detected by fluorescence. The expression of osteopontin, osteonectin and osteocalcin were assayed by immunohistochemistry and Western Blot analysis. We revealed a decrease of osteopontin expression in 2D and 3D environment during differentiation. The weak initial osteonectin signal, culminating on 7th or 14th day of differentiation, depends on collagen I and vitronectin coating in 2D system. The highest activity of ALP was detected on 21th day of osteogenic differentiation. The PC scaffolds provided better conditions for osteogenic differentiation of MSCs than PAC scaffolds in vitro . We also observed expected effects of collagen I and vitronectin on the acceleration of osteogenic differentiation of miniature pig MSC. Our results indicate similar ability of miniature pig MSCs osteogenic differentiation in 2D and 3D environment, but the expression of osteogenic marker s in scaffolds and ECM coated monolayers started earlier than in the monolayers without ECM., J. Juhásová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The present nuclear and cell body diameter measurements demonstrated size differences of the approximate cell space estimate occupied by the cell nucleus during the cell differentiation in lymphocytic, granulocytic and erythroid cell lineages. These lineages were used as convenient models because all differentiation steps were easily identified and accessible in diagnostic peripheral blood or bone marrow smears of blood donors (BDs), patients suffering from chronic lymphocytic leukemia (CLL), patients with chronic myeloid leukemia (CML) and refractory anemia (RA) of the myelodysplastic syndrome (MDS). The cell space occupied by the nucleus was constant and did not change during the cell differentiation in the lymphocytic cell lineages of BDs and CLL patients despite the decreased cell size. In contrary, the cell space occupied by the nucleus markedly decreased in differentiating cells of granulocytic and erythroid lineages of patients suffering from CML. In the erythroid cell lineage in patients with RA of MDS the small reduction of the cell space occupied by the nucleus during the differentiation was not significant. The measurements also indicated that in progenitor cells of all studied cell lineages nuclei occupied more than 70 % of the cell space. Thus, the nucleus-cytoplasmic morphological and functional equilibrium appeared to be characteristic for each differentiation step and each specific cell lineage., Karel Smetana, Hana Klamová, Dana Mikulenková, Jaroslav Čermák, Petra Otevřelová, Josef Karban, Marek Trněný., and Obsahuje bibliografii