Mesenchymal stem cells (MSCs) have been reported to improve
survival of cardiomyocytes (CMCs) and overall regeneration of
cardiac tissue. Despite promising preclinical results, interactions
of MSCs and CMCs, both direct and indirect, remain unclear. In
this study, porcine bone marrow MSCs and freshly isolated
porcine primary adult CMCs were used for non-contact co-culture
experiments. Morphology, viability and functional parameters of
CMCs were measured over time and compared between CMCs
cultured alone and CMCs co-cultured with MSCs. In non-contact
co-culture, MSCs improved survival of CMCs. CMCs co-cultured
with MSCs maintained CMCs morphology and viability in
significantly higher percentage than CMCs cultured alone. In
viable CMCs, mitochondrial respiration was preserved in both
CMCs cultured alone and in CMCs co-cultured with MSCs.
Comparison of cellular contractility and calcium handling,
measured in single CMCs, revealed no significant differences
between viable CMCs from co-culture and CMCs cultured alone.
In conclusion, non-contact co-culture of porcine MSCs and CMCs
improved survival of CMCs with a sufficient preservation of
functional and mitochondrial parameters.
Alterations in mitochondrial parameters are an important hallmark of Huntington’s disease (HD). The ubiquitous expression of mutant huntingtin raises the prospect that mitochondrial disturbances can also be detected and monitored through buccal epithelial cells. In a group of 34 patients with Huntington’s disease and a group of 22 age-related healthy volunteers, respiratory complex I and IV protein quantities in buccal epithelial cells were measured using the dipstick immunocapture assay. The protein quantity of respiratory complex I correlates with age (r = 0.427, P = 0.026, FWE-P = 0.156) in the patient group, but not in the group of healthy subjects. Our non-invasive approach allows us to obtain valuable information for the studies of mitochondrial biochemical parameters in patients with neurodegenerative diseases and could also be useful in epidemiological studies. and Corresponding author: Hana Hansíková
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90 % of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Mitochondria are considered central regulator of the aging process; however, majority of studies dealing with the impact of age on mitochondrial oxygen consumption focused on skeletal muscle concluding (although not uniformly) a general declining trend with advancing age. In addition, gender related differences in mitochondrial respiration have not been satisfactorily described yet. The aim of the present study was to evaluate mitochondrial oxygen consumption in various organs of aging male and female Fischer 344 rats at the ages of 6, 12 and 24 months. Mitochondrial respiration of homogenized (skeletal muscle, left and right heart ventricle, hippocampus, cerebellum, kidney cortex), gently mechanically permeabilized (liver) tissue or intact cells (platelets) was determined using high-resolution respirometry (oxygraphs O2k, Oroboros, Austria). The pattern of age-related changes differed in each tissue: in the skeletal muscle and kidney cortex of both sexes and in female heart, parameters of mitochondrial respiration significantly declined with age. Resting respiration of intact platelets displayed an increasing trend and it did not correlate with skeletal muscle respiratory states. In the heart of male rats and brain tissues of both sexes, respiratory states remained relatively stable over analyzed age categories with few exceptions of lower mitochondrial oxygen consumption at the age of 24 months. In the liver, OXPHOS capacity was higher in females than in males with either no difference between the ages of 6 and 24 months or even significant increase at the age of 24 months in the male rats. In conclusion, the results of our study indicate that the concept of general pattern of age-dependent decline in mitochondrial oxygen consumption across different organs and tissues could be misleading. Also, the statement of higher mitochondrial respiration in females seems to be conflicting, since the genderrelated differences may vary with the tissue studied, combination of substrates used and might be better detectable at younger ages than in old animals.
Membrane fluidity is a widely recognized biophysical variable that provides information about structural organization of the subcellular membranes exhibiting physical characteristics of liquid crystals. The term “fluidity” reflects in this case the tightness in packing of acyl parts of the membrane phospholipid molecules, a feature that may influence considerably the molecular mobility and via that also the sensitivity and reactivity of membranebound transporters, receptors and enzyme systems. Data presented in this review are aimed to demonstrate the substantial role of changes in membrane fluidity occurring in the processes associated with endogenous protection observed in cardiac sarcolemma and mitochondria in diverse pathologies, particularly in diabetes and hypertension., A. Ziegelhöffer, ... [et al.]., and Obsahuje seznam literatury
In Amaranthus tricolor the leaf structure included three layers of chlorenchyma on the vascular bundle periphery, namely, mesophyll cells (MSCs) with few chloroplasts, outer larger round bundle sheath cells (BSCs) with many chloroplasts in a centripetal position, and inner smaller BSCs with few chloroplasts around the vascular bundle cells. The ultra-thin sections showed that BSCs had abundant organelles, namely many large and round mitochondria with well-developed cristae in the cytoplasm. The chloroplasts in the BSCs were lens-like bodies, which seemed to be oval on cross sections. Granal and intergranal thylakoids were usually distinguished. Grana were stacked in parallel with prevailing plane of thylakoid lamellae. The chloroplasts in the MSCs appeared smaller than those in the BSCs and contained less stacked thylakoids but abundant peripheral reticulum. The ultra-thin sections of immunogold-labelled anti-ribulose-1,5-bisphosphate carboxylase/oxygenase (anti-RuBPCO) exhibited high density of RuBPCO labelling in the stroma region of chloroplasts of the BSCs. Some anti-RuBPCO immunogold particles were observed in the stromal region of MSCs chloroplasts. The anti-activase (A) immunogold-labelling indicated that RuBPCOA was mainly distributed in the stroma region of both BSCs and MSCs chloroplasts. From the chloroplast ultrastructure and localisation of RuBPCO and RuBPCOA we deduced that the photosynthetic carbon reduction cycle and the formation of assimilatory power function in both MSC and BSC chloroplasts of A. tricolor. and J. Hong ... [et al.].
Granulosa cells (GCs) are somatic cells essential for establishing and maintaining bi-directional communication with the oocytes. This connection has a profound importance for the delivery of energy substrates, structural components and ions to the maturing oocyte through gap junctions. Cumulus cells, group of closely associated GCs, surround the oocyte and can diminished the effect of harmful environmental insults. Both GCs and oocytes prefer different energy substrates in their cellular metabolism: GCs are more glycolytic, whereas oocytes rely more on oxidative phosphorylation pathway. The interconnection of these cells is emphasized by the fact that GCs supply oocytes with intermediates produced in glycolysis. The number of GCs surrounding the oocyte and their age affect the energy status of oocytes. This review summarises available studies collaboration of cellular types in the ovarian follicle from the point of view of energy metabolism, signaling and protection of toxic insults. A deeper knowledge of the underlying mechanisms is crucial for better methods to prevent and treat infertility and to improve the technology of in vitro fertilization.
Hyperbaric oxygen (HBO) therapy, i.e. breathing pure oxygen
under increased environmental pressures serves as a treatment
for diverse medical conditions. However, elevated oxygen
concentration can be detrimental to central nervous system or
lungs. Our study aimed to evaluate the effects of repeated
exposure to HBO on mitochondrial respiration assessed by highresolution respirometry (HRR), cell viability estimated by
PrestoBlue® reaction, morphology analyzed by routine phase
contrast and fluorescent microscopy, and superoxide dismutase
(SOD) and citrate synthase (CS) activities using human lung
fibroblasts. The cells were exposed to HBO for 2 h per day for
5 consecutive days. One day after the last exposure, HBO cells
displayed significantly smaller area and perimeter, compromised
viability and elevated SOD activity. No changes were detected in
CS activity or quality of mitochondrial network. HRR revealed
impaired mitochondrial oxygen consumption manifested by
increased leak respiration, decreased activity of complex II and
compromised ATP-related oxygen consumption when fatty acids
were oxidized. Our findings document that in conditions
mimicking chronic intermittent exposure to HBO, lung fibroblasts
suffer from compromised mitochondrial respiration linked to
complex II and impaired cellular growth in spite of increased
antioxidant defense. Underlying mechanism of this HBO-induced
mitochondrial dysfunction should be further explored.
Mitochondria were isolated from regenerating rat liver 12, 24 and 48 h after partial hepatectomy. The "State 3" and "State 4" respiration were measured in the presence of succinate. The P/O quotient and respiratory control index (RCI) were calculated. The experimental data showed that the partial uncoupling of oxidative phosphorylation in regenerating liver mitochondria occurring in the early period of regeneration is partly due to free fatty acids.
Superresolution microscopy enables to see previously hidden details of cellular structures. However, it requires to use high irradiation intensities that may cause artefacts and photodamage of fragile biological samples. Newly developed confocal technique and Olympus super resolution (OSR), that combines spinning disk confocal with structured illumination microscopy, represents a reliable and fast superresolution avoiding photodamage. We demonstrate an OSR microscope platform, that enables subsecond, multicolour data acquisition. It also provides access to subdiffraction structured illumination imaging. We show that OSR allows live-cell experiments without any noticeable cellular damage. OSR system has an improved lateral (∼∼2) and axial (∼∼3) resolution compared with conventional confocal imaging. Moreover, OSR is compatible with both fixed and live cell imaging. and Superrezoluční mikroskopie umožňuje zobrazovat dříve nepoznané detaily jemných buněčných struktur. Vyžaduje však světelný zdroj vysoké intenzity, který může způsobovat artefakty a foto-poškození citlivých biologických vzorků. Nově vyvinutá konfokální technologie superrezolučního mikroskopu Olympus (OSR) kombinuje rotující disk se strukturovaným mikroskopickým osvětlením a představuje spolehlivé a rychlé superrezoluční zobrazení, které minimalizuje foto-toxicitu. V tomto příspěvku představujeme platformu OSR mikroskopu, která umožňuje subsekundovou vícebarevnou akvizici dat a subdifrační zobrazení ve strukturovaném osvětlení. OSR umožňuje zobrazování živých buněk bez jejich zjevného poškození. Ve srovnání s konvenčním konfokálním zobrazováním má systém OSR vylepšené laterální (~ 2) a axiální (~ 3) rozlišení. OSR je navíc kompatibilní se zobrazováním fixovaných i živých buněk.