Water is one of the most important components of the environment, having a direct effect on the maintenance of life on the Earth. In this paper, analysis of groundwater level variations, water balance and all the parameters included in these quantities, i.e. precipitation, evapotranspiration, surface run-off and subsurface run-off, were performed in the area of the Sudety Mountains for the period of November 2002 - October 2015. The groundwater level variations were computed on the basis of the mean Terrestrial Water Storage (TWS) values determined from Gravity Recovery and Climate Experiment (GRACE) observations and Global Land Data Assimilation System (GLD AS). TWS data have been determined with a spatial resolution of one degree and temporal resolution of one month. According to the results, groundwater level variation can be approximately determined by water balance changes (with reverse sign). Specifically, for the Sudety area a high average stability of total water storage over the period of past 13 years and decline in groundwater level by about 13 cm (approximately 1 cm/year) was detected., Zofia Rzepecka, Monika Birylo, Joanna Kuczynska-Siehien, Jolanta Nastula and Katarzyna Pajak., and Obsahuje bibliografické odkazy
Although the quantification of real evapotranspiration (ETr) is a prerequisite for an appropriate estimation of the water balance, precision and uncertainty of such a quantification are often unknown. In our study, we tested a combined growth and soil water balance model for analysing the temporal dynamics of ETr. Simulated ETr, soil water storage and drainage rates were compared with those measured by 8 grass-covered weighable lysimeters for a 3-year period (January 1, 1996 to December 31, 1998). For the simulations, a soil water balance model based on the Darcy-equation and a physiological-based growth model for grass cover for the calculation of root water uptake were used. Four lysimeters represented undisturbed sandy soil monoliths and the other four were undisturbed silty-clay soil monoliths. The simulated ETr-rates underestimated the higher ETr-rates observed in the summer periods. For some periods in early and late summer, the results were indicative for oasis effects with lysimeter-measured ETr-rates higher than corresponding calculated rates of potential grass reference evapotranspiration. Despite discrepancies between simulated and observed lysimeter drainage, the simulation quality for ETr and soil water storage was sufficient in terms of the Nash-Sutcliffe index, the modelling efficiency index, and the root mean squared error. The use of a physiological-based growth model improved the ETr estimations significantly.
The paper provides basic information on hydrological research performed in the mountain catchment of the Jalovecký creek, the Western Tatra Mountains by the Institute of Hydrology of the Slovak Academy of Sciences since the mid-1980-ties. The research was devoted to better understanding of spatial distribution of precipitation, soil moisture, snow cover, evapotranspiration and runoff generation. First part of the paper brings an overview of the results. Second part of the paper is devoted to the water balance of the catchment in hydrological years 1989-2005 and estimation of mean transit time of water in the catchment as given by the tracer method using the stable environmental isotope of 18O. Catchment mean annual precipitation in the studied period was 1562 mm. It varied from 1116 mm in the year of 2003 to 1854 mm in 2001. Mean annual runoff was 1015 mm and it varied between 703 mm in 2003 and 1284 mm in 1998. Mean annual air temperature at catchment mean elevation (1500 m a.s.l.) was 3.5 °C. Interpertation of δ18O in precipitation and runoff from the period 1991-2002 gave the mean transit time of 13 months. Direct application of measured values in precipitation provided more realistic results than the input data series prepared according to recommendations found in the literature. and Príspevok poskytuje základné informácie o hydrologickom výskume, ktorý vykonáva od druhej polovice 80. rokov 20. storočia Ústav hydrológie SAV v horskom povodí Jaloveckého potoka v Západných Tatrách. Výskum poskytol poznatky o priestorovom rozdelení atmosférických zrážok, vlhkosti pôdy, snehovej pokrývke, evapotranspirácii a tvorbe odtoku vo vysokohorskom prostredí. Stručný prehľad niektorých z nich uvádzame v prvej časti príspevku. Druhá časť príspevku za zaoberá hydrologickou bilanciou povodia za obdobie 1989-2005 a určením priemernej doby prechodu vody povodím pomocou metódy stopovačov, pričom bol použitý stabilný prírodný izotop kyslíka 18O. Priemerný ročný úhrn zrážok v povodí v období 1989-2005 bol 1562 mm (od 1116 mm roku 2003 do 1854 mm v roku 2001). Priemerný ročný odtok z povodia bol 1015 mm (od 703 mm v roku 2003 do 1284 mm v roku 1998). Priemerná ročná teplota vzduchu v priemernej nadmorskej výške povodia 1500 m n.m. bola 3,5 °C. Interpretáciou hodnôt δ18O v zrážkach a v odtoku za obdobie 1991-2002 bola určená priemerná doba prechodu 13 mesiacov, čo je časový úsek porovnateľný s tradičným hydrologickým rokom. Použili sme pritom dve varianty prípravy hodnôt δ18O v zrážkach (vstup do hydrologického cyklu povodia). Priame použitie meraných hodnôt dalo realistickejší výsledok, ako rad vstupných hodnôt upravený podľa odporúčaní z literatúry.
In this study a 25-year (1976-2000) series of observed precipitation, temperature, runoff and further water-flows of a lysimeter balance within the pre-alpine research catchment Rietholzbach (Switzerland) is analyzed. The comparison of the precipitation volumes on this lysimeter to precipitation collected by a conventional rain gauge shows that conventional rain gauges provide strongly underestimated values for precipitation, especially in winter. The obtained monthly precipitation correction factors indicate that precipitation losses above 20% for rain and above 50% for snow are realistic. The observed hydrometeorological values allowed for improving the understanding of the model-based simulation of the hydrological processes with distributed hydrological models and for investigating both a conceptual and a physically based runoff-generation approach. The albedo, soil moisture and lysimeter water balance allowed for a simultaneous assessment of the performance of several model components, such as the soil moisture, runoff-generation and evapotranspiration modules and the module for the determination of snow cover accumulation and melt. and V príspevku sú analyzované 25-ročné rady zrážok, teploty vzduchu, odtoku a hydrologickej bilancie v lyzimetri vo výskumnom povodí Rietholzbach (Švajčiarsko). Porovnanie zrážok zachytených lyzimetrom a konvenčným zrážkomerom ukazuje, že údaje zo zrážkomera sú veľmi podhodnotené, najmä v zime. Podľa získaných mesačných koeficientov opráv zrážok sú straty zrážok vyše 20 % pre dážď a vyše 50 % pre sneh realistické. Pozorované meteorologické údaje umožnili lepšie pochopiť simuláciu hydrologických procesov pomocou distribuovaných hydrologických modelov a pomohli pri posudzovaní konceptuálneho aj fyzikálne založeného prístupu k modelovaniu tvorby odtoku. Albedo, vlhkosť pôdy a hydrologická bilancia lyzimetra umožnili posúdiť funkciu niekoľkých zložiek modelu (moduly vlhkosti pôdy, tvorby odtoku, evapotranpirácie a akumulácie a topenia snehu).
Desiccation resistance of adult males and females of the midge, Belgica antarctica (Diptera: Chironomidae) was evaluated to determine how this short-lived stage maintains water balance in the dry Antarctic environment. Both sexes had slightly lower water content (≈60%) and a higher dehydration tolerance (>30% water loss) than most other insects. Water loss rates were high and increased rapidly at temperatures above 15°C, indicating that the adult midges are more hygric than many other polar terrestrial arthropods. Water gain was accomplished by free water uptake with minimal or no contribution from absorption of water vapor or metabolic water production. Parameters related to water balance did not differ among populations from different islands. Overall, the high water requirements of the adult midge appear to be a significant challenge and presumably dictate that the adult midges must emerge during the brief period when free water is readily available and seek protected microhabitats that facilitate water retention.
Providing information on the impacts of climate change on hydrological processes is becoming ever more critical. Modelling and evaluating the expected changes of the water resources over different spatial and time scales can be useful in several fields, e.g. agriculture, forestry and water management. Previously a Budyko-type spatially distributed long-term climate-runoff model was developed for Hungary. This research includes the validation of the model using historical precipitation and streamflow measurements for three nested sub-catchments of the Zala River Basin (Hungary), an essential runoff contributing region to Lake Balaton (the largest shallow lake in Central Europe). The differences between the calculated (from water balance) and the estimated (by the model) mean annual evapotranspiration varied between 0.4% and 3.6% in the validation periods in the sub-catchments examined. Predictions of the main components of the water balance (evapotranspiration and runoff) for the Zala Basin are also presented in this study using precipitation and temperature results of 12 regional climate model simulations (A1B scenario) as input data. According to the projections, the mean annual temperature will be higher from period to period (2011–2040, 2041–2070, 2071–2100), while the change of the annual precipitation sum is not significant. The mean annual evapotranspiration rate is expected to increase slightly during the 21st century, while for runoff a substantial decrease can be anticipated which may exceed 40% by 2071–2100 relative to the reference period (1981–2010). As a result of this predicted reduction, the runoff from the Zala Basin may not be enough to balance the increased evaporation rate of Lake Balaton, transforming it into a closed lake without outflow.
In this paper, to evaluate the hydrological effects of Caragana korshinskii Kom., measured data were combined with model-simulated data to assess the C. korshinskii soil water content based on water balance equation. With measured and simulated canopy interception, plant transpiration and soil evaporation, soil water content was modeled with the water balance equation. The monthly variations in the modeled soil water content by measured and simulated components (canopy interception, plant transpiration, soil evaporation) were then compared with in situ measured soil water content. Our results shows that the modeled monthly water loss (canopy interception + soil evaporation + plant transpiration) by measured and simulated components ranges from 43.78 mm to 113.95 mm and from 47.76 mm to 125.63 mm, respectively, while the monthly input of water (precipitation) ranges from 27.30 mm to 108.30 mm. The relative error between soil water content modeled by measured and simulated components was 6.41%. To sum up, the net change in soil water (ΔSW) is negative in every month of the growing season. The soil moisture is approaching to wilting coefficient at the end of the growth season, and the soil moisture recovered during the following season.
Basic information about the evapotranspiration and its components is presented. System of equations describing the transport of water and energy in the soil - plant continuum is analyzed. The system of five differential equations with five unknowns is proposed, describing transport of heat and water vapour within the plant canopy, including exchange processes among the leaves and the atmosphere, vertical transport of the heat, water vapour and the energy balance. and Príspevok obsahuje základné informácie o evapotranspirácii a jej zložkách, výpare a transpirácii. Proces prenosu vody a energie v systéme pôda - porast je opísaný systémom piatich diferenciálnych rovníc kvantifikujúcich prenos vodnej pary a tepla medzi listami a atmosférou, ktoré umožnujú výpočet charakteristík vertikálneho prenosu vody a tepla v poraste a tiež bilanciu energie v tomto systéme.
Evaporation of water from the soil is described and quantified. Formation of the soil dry surface layer is quantitatively described, as a process resulting from the difference between the evaporation and upward soil water flux to the soil evaporating level. The results of evaporation analysis are generalized even for the case of water evaporation from the soil under canopy and interaction between evaporation rate and canopy transpiration is accounted for. Relationships describing evapotranspiration increase due to evaporation of the water intercepted by canopy are presented. Indirect methods of evapotranspiration estimation are discussed, based on the measured temperature profiles and of the air humidity, as well as of the net radiation and the soil heat fluxes. and Príspevok obsahuje kvantitatívny opis výparu vody z pôdy a bilanciu energie počas vyparovania, charakterizovanú rovnicou obsahujúcou turbulentný tok tepla a skupenské teplo vyparovania. Je opísaný proces tvorby suchej vrstvy na povrchu pôdy počas výparu; jeho tvorba závisí od rozdielu medzi rýchlosťou výparu a prítokom vody k horizontu výparu zo spodnej vrstvy pôdy.Výsledky analýzy možno použiť aj na kvantifikáciu výparu z pôdy pod porastom. Uvádzajú sa vzťahy na výpočet zvýšenia rýchlosti evapotranspirácie, spôsobenej intercepciou. Práca obsahuje analýzu nepriamych metód výpočtu evapotranspirácie, ktoré sú založené na meraní profilov teploty a vlhkosti vzduchu nad vyparujúcim povrchom, ako aj radiačnej bilancie a tokov tepla v pôde.